Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность в изотермических реакторах

    Таким образом, для изотермических реакторов с отводом теплоты путем теплопроводности приемлемые размеры характеризуются максимумом кривой. Если известно расстояние d, то можно, но трудно осуществить равномерное распределение температур. [c.229]

    Для эндотермических процессов при равенстве начальных температур изотермы и адиабаты а. н изотермический режим (кривая 2, рис. 14,6) приводит к снижению средней температуры слоя катализатора, по сравнению с адиабатическим (кривая /, рис. 14,6) и, следовательно, к снижению скорости процесса. Однако, используя высокую эффективную теплопроводность слоя и весьма большие коэффициенты теплоотдачи в изотермических реакторах смешения, следует подводить тепло непосредственно в слой катализатора и достигать увеличения максимальной степени превращения по сравнению с адиабатой (см. изотермы 5 и на рис. 14,6). [c.51]


    Для устранения недостатков обычных реакторов проточного метода нами предложена конструкция блочного многоканального изотермического реактора, моделирующего промышленный конвертор, с длиною слоя катализатора 150—300 см. Благодаря высокой теплопроводности металла, из которого изготовлен блок, поддерживается изотермичность по длине и сечению слоя катализатора. Условия катализа в реакторе соответствуют методу идеального вытеснения. Возможность определения концентрации реагентов в десяти точках по длине слоя катализатора позволяет получить вид кинетического уравнения и решать задачи оптимизации. Кроме того, разработана конструкция блочного капсульного однорядного реактора метода идеального вытеснения, предложенного М. И. Темкиным с сотрудниками [3, 4]. Реактор представляет собой металлический блок, размером 7X7 см, с семью каналами, в которые помещаются капсулы из того же металла. В каналах капсул в один ряд располагаются зерна исследуемого контакта и теплоносителя. В однорядном слое контакта контролируется изотермичность и определяются градиенты концентраций, что позволяет определять вид кинетических уравнений. [c.102]

    Модель проточного реактора с зернистым слоем катализатора, в которой учитываются процессы внутри зерна и на его границе, фактически представляет собою двухфазную модель, хотя и усредняющую условия в каждой фазе. Эта модель включает в себя уравнение, описывающее перенос вещества внутри зерна катализатора, перенос вещества и тепла между катализатором и потоком, а также уравнения материального и теплового балансов для потока. Ввиду достаточно большой теплопроводности материала зерен, последние можно считать изотермическими и составлять баланс тепла для зерна в целом. [c.291]

    Твердое вещество находится в состоянии идеального смешения. Псевдоожиженный слой является лучшим примером реакторов с идеальным смешением твердой фазы (рис. ХИ-13, д). Характеристики газового потока в аппаратах такого типа трудно поддаются определению. Поэтому считают, что режим движения газа в реакторах с псевдоожижением находится в промежуточной области между режимом идеального смешения и режимом идеального вытеснения. Вследствие большой эффективной теплопроводности псевдоожиженного слоя процессы в этих аппаратах обычно принимают изотермическими. [c.347]


    Оригинальный метод изучения кинетики реакций, протекающих в полимерах и сопровождающихся выделением летучих продуктов, предложен Франком [68]. При нагревании поливинилового спирта (или его смеси с полиакриловой кислотой) происходит реакция сшивания, которая протекает с выделением паров воды. Кинетические реакции можно изучать, регистрируя выделение паров воды. Реакцию проводили в специальном трубчатом реакторе, который заполняли пленкой поливинилового спирта. Реактор помещали в воздушный термостат и включали в схему хроматографа вместо хроматографической колонки. Реактор нагревали в термостате хроматографа с заданной постоянной скоростью до определенной температуры, после нагрева до которой реакция протекает в изотермических условиях. В ходе реакции через реактор с постоянной скоростью пропускали поток газа-носителя. Выделяющуюся при сшивании поливинилового спирта воду определяли с помощью детектора по теплопроводности. Типичная кривая изменения концентрации воды в потоке газа-носителя показана на рис. 28. Реакцию изучали нри температурах до 150—300° С. [c.107]

    Отклонения от модели поршневого режима могут вызываться поперечными температурными градиентами. Если в трубчатом реакторе происходит экзотермическая реакция и тепло от него отводится с помощью некоторого внешнего охлаждающего устройства, тогда в реакторе будет наблюдаться поперечный температурный градиент. И поскольку газ в центре трубки имеет более высокую температуру, чем у стенок, температурный профиль будет иметь параболическую форму, а профиль скорости трубчатого реактора будет неплоским. Если реактор работает в адиабатических условиях, то в этом случае не будет происходить отвода тепла в радиальном направлении. Однако из-за того, что газ вблизи стенки имеет меньшую скорость, чем в центре трубки (вследствие более продолжительного пребывания газа в этой зоне наблюдается большая степень превращения), для экзотермической реакции температура в центре слоя катализатора ниже, чем у стенки реактора и в этом случае наблюдается обратный параболический температурный профиль. Для экзотермической реакции, происходящей в неадиабатических условиях, в которых наблюдается отвод тепла у стенки трубы, влияние поперечного температурного градиента и влияние профиля скорости накладываются друг на друга, в результате чего в профиле температуры наблюдается впадина, соответствующая примерно центру трубы, и небольшой максимум, соответствующий примерно стенке трубы. Когда же имеет место радиальный температурный градиент, то, по-видимому, имеется значительное изменение скорости реакции по диаметру трубы (для большинства простых реакций фактор такого изменения составляет величину 4000 и более), поскольку скорость реакции изменяется в зависимости от обратной абсолютной температуры экспоненциально. Однако существуют приближенные методы обработки расчетных данных при проектировании и для тех случаев, когда в реакторе имеются поперечные температурные градиенты. Их мы рассмотрим в разд. 9.3.2. Частицы катализатора с высокой теплопроводностью и низкой пористостью, как правило, снижают эти нежелательные влияния. Только в тех случаях, когда определенно известно, что условия в реакторе приближаются к изотермическим условиям, можно игнорировать присутствие температурных градиентов в радиальном и продольном направлениях и с достаточным основанием применять модель поршневого режима течения газового потока. [c.394]

    Для получения корректных результатов следует поддерживать такое распределение температуры в реакторе, чтобы ее максимум приходился на участок реактора, заполненный катализатором температура всех других участков должна быть ниже, чтобы в них не происходило нежелательных термических разложений. Наиболее точные измерения температуры можно проводить с помощью специального внутреннего кармана со скользящей термопарой. Менее точны измерения температуры с помощью термопар, припаянных к наружным стенкам реактора. Ошибки здесь связаны с тепловым излучением и теплопроводностью соединительных проводников. Обычно предполагают, что разность температур печи и катализатора, расположенного внутри реактора, постоянна, и измеряют только температуру печи. Правильность такого предположения необходимо проверять для каждого прибора. Существенно, чтобы режим работы таких реакторов был изотермическим. [c.33]

    К пиролизерам постоянного нагрева относят также устройства для парофазного пиролиза, предназначенные для термического разложения летучих соединений. Парофазный пиролизер включает трубчатый реактор, который с целью увеличения поверхности контакта изготавливают в виде змеевика из трубки небольшого диаметра. Конструкция такого пиролизера описана в работе [14]. Змеевиковый реактор изготовлен из золотой трубки длиной 1 м и внутренним диаметром 1 мм, которая намотана на серебряный сердечник и закрыта серебряной рубашкой. До входа в пиролизер газ-носитель подогревается в специальной трубке, расположенной в корпусе пиролитического устройства, до температуры реактора. Такая конструкция парофазного пиролизера, обладающего высокой тепловой массой и высокой теплопроводностью, позволяет создавать равномерную температуру по всему реактору и поддерживать изотермический режим даже в случае эндотермических реакций распада. Реакторы, изготовленные из меди или серебра, дают аналогичные результаты [14] в отношении создания температурного режима, при этом вследствие крекинга исследуемых соединений может образовываться углерод, и поэтому золотой реактор является более предпочтительным, так как имеется возможность выжечь образовавшийся углерод в присутствии воздуха без опасности окисления материала самого реактора. [c.14]


    В предыдущих рассуждениях теплопроводность не принималась во внимание, так как ею можно было пренебречь. Однако в некоторых случаях поток теплоты за счет теплопроводности div к grad Т) в изотермических реакторах может иметь очень важное значение. Например, при гетерогенных реакциях, когда теплота образуется на поверхности катализатора, отвод ее с конвективным потоком тормозится. [c.228]

    Таким образом, разность температур между псевдоол<иженным слоем и поверхностью теплообмена практически равна перепаду температуры в пограничной пленке , примыкающей к поверхности теплообмена [317]. За пределами этой пленки и участка стабилизации у газораспределительной решетки псевдоожиженный слой, вследствие интенсивного перемешивания твердой фазы, представляет собой практически изотермическую систему даже при значительных габаритах. Это важное свойство псевдоожиженных систем позволяет успешно использовать их для осуществления ряда высоконапряженных технологических процессов, требующих достаточно тонкого регулирования температуры в слое с одновременным отводом (подводом) значительных количеств тепла. Особенно выгодным представляется применение аппаратов с псевдоожиженным слоем для проведения каталитических реакций, протекающих в узком температурном интервале, вместо реакторов с неподвижным слоем катализатора внутри большого количества длинных и узких труб. Небольшой диаметр трубок таких реакторов предопределен ограниченной эффективной теплопроводностью неподвижного [c.288]

    Наряду с реакторами с кипящим слоем, щирокое применение находят трубчатые реакторы изотермического типа со стационарным слоем. Это одно- или многоступенчатые реакторы с трубами небольшого диаметра, заполненными катаяизатором с соответствующей теплопроводностью. Агент окисления подают на каждую ступень. Тепло реакции снимается охлаждением через стенку ияи парообразованием на теплосъемных поверхностях. Для поддержания определенной температуры Б слое каталййатора подбирают соответствующий диаметр труб. [c.12]


Смотреть страницы где упоминается термин Теплопроводность в изотермических реакторах: [c.47]    [c.149]   
Смотреть главы в:

Научные основы химической технологии -> Теплопроводность в изотермических реакторах

Научные основы химической технологии -> Теплопроводность в изотермических реакторах




ПОИСК







© 2024 chem21.info Реклама на сайте