Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции стадия кинетическая

    Из разбора этих относительно простых примеров реакций первого порядка уже видно, что если реакция протекает через несколько стадий, кинетические уравнения, определяюш,ие скорость, получаются довольно громоздкими. При анализе экспериментальных данных обычно пытаются описать их уравнением, выведенным на основании предположения, что определяющей является только одна стадия из пяти или в крайнем случае с учетом диффузионной стадии в сочетании с химической реакцией на поверхности или адсорбцией.  [c.222]


    Определение кинетического уравнения упрощается, если можно предположить элементарные стадии процесса и неустойчивые промежуточные вещества. Для элементарных реакций выполняются кинетические уравнения, основанные на законе действия масс, и отпадает необходимость определения порядка реакций. Чтобы исключить из общего кинетического уравнения концентрации неустойчивых промежуточных веществ, используют принцип стационарности, по которому концентрации этих веществ в ходе процесса считают постоянными. Для иллюстрации приводится пример VI- . [c.174]

    Граница кинетической области устанавливается на основе соотношения между истинной и наблюдаемой скоростями процесса. Только для параллельных реакций в области внутренней диффузии достигается более высокая избирательность, чем в кинетической области, если скорость побочных процессов уменьшается при снижении концентрации по глубине зерна быстрее скорости основной реакции. Когда кинетическая модель процесса линейна (скорости всех стадий описываются линейными дифференциальными уравнениями), в рабочем интервале изменения концентраций, наблюдаемые и истинные скорости отдельных стадий сложной реакции связаны соотношением [c.478]

    Процесс синтеза метанола аналогичен синтезу аммиака не только в технологически-аппаратурном оформлении, но а известной степени и в механизме реакции. Активированная адсорбция водорода на поверхности катализатора является лимитирующей стадией, Кинетическое уравнение реакции имеет вид [c.166]

    Протекание гетерогенно-каталитического процесса в интервале температур, когда лимитирующая стадия — собственно химическая реакция, называют кинетической областью гетерогенно-каталитического процесса. [c.436]

    Различают реакции первого, второго и высшего порядка Порядок реакции определяется кинетическим уравнением и чаще всего ие совпадает с молекулярностью (стехиометрией) реакции, так как большинство сложных реакций протекает в несколько стадий. Промежуточные реакции могут оказаться решающими при определении полной скорости реакции. У реакции первого порядка, определяемой стехиометрическим уравнением А- В+С+. .., скорость пропорциональна концентрации с вещества А  [c.684]

    Следовательно, ai = п , bj= rij для всех , j. Отсюда следует, что, так же как в случае обратимых реакций, протекающих в одну элементарную стадию, в случае сложных обратимых реакций, описываемых кинетическим уравнением (IV.11), константа равновесия равна отношению констант скорости прямой и обратной реакций. [c.150]


    Многие реакции протекают в несколько последовательных и параллельных стадиях. Кинетический расчет таких реакций очень сложен. В химической кинетике широко используется еще один приближенный метод — метод стационарных концентраций (стационарного состояния). Этот метод применим к системам последовательных и последовательно-параллельных реакций, если промежуточные продукты в них характеризуются высокой реакционной способностью. Предполагается, что концентрация промежуточных соединений, находящихся в системе в незначительных количествах по сравнению с исходными веществами и продуктами ре- [c.327]

    Концентрация продукта В изменяется как за счет прямого, так и обратного процесса. Поэтому йх = йх + йх , где йХх и йх — изменение концентрации продукта в результате прямой и обратной реакций. Напишем кинетические уравнения прямой и обратной стадий, используя концентрацию вещества В  [c.233]

    Принятый механизм реакции должен отвечать совокупности условий —при суммировании всех стадий давать стехиометрическое уравнение, содержать частицы, существование которых может быть обосновано, полностью соответствовать энергетике реакций, давать кинетическое уравнение, совпадающее с полученными экспериментально. Кинетическое уравнение, соответствующее данному механизму, получают, выражая скорость изменения концентрации одной из устойчивых частиц с помощью уравнений для скоростей отдельных экспериментальных стадий. [c.187]

    Если химическая реакция протекает в одну элементарную-стадию, т. е. если осуществляется прямой переход реагирующих частиц в продукты реакции, то кинетическое уравнение имеет вид [c.62]

    Скорость химической" реакции значительно меньше скорости диффузии Тогда к к и гю = кс. Общая скорость реакции опять определяется наиболее медленной стадией, т. е.. скоростью химической реакции. Это — кинетическая область гетерогенной химической реакции. Из (1Х.35) имеем, что с с. Концентрации реагирующего вещества в объеме и на поверхности приближенно равны друг другу. [c.263]

    Таким образом, если реакция протекает в одну стадию, то порядок и мо. еку-лярность ее совпадают. Если реакция протекает в несколько стадий, то порядок ее определяется медленной стадией и равен молекулярности этой стадии. Порядок реакции определяется кинетическим уравнением, молекулярность реакции — ее истинным механизмом. Вывести кинетическое уравнение реакции всегда возможно, установить же ее молекулярность удается не всегда. [c.116]

    Поскольку определяет скорость всей реакции стадия ионизации, реакция подчиняется кинетическому уравнению первого порядка  [c.710]

    Для элементарной реакции А + В = R +. .., т.е. протекающей в одну стадию, кинетическое уравнение строится на основе закона действующих масс  [c.76]

    Химическая реакция, состоящая из элементарных стадий, протекает в молекулярном масштабе. Ее свойства (например, скорость) не зависят от масштаба реактора, т.е. скорость реакции зависит только от условий ее протекания независимо от того, как или где они созданы. Результатом исследования на этом уровне является кинетическая модель химической реакции — зависимость скорости реакции от условий. Следующий масштабный уровень — химический процесс — совокупность химической реакции и явлений переноса, таких как диффузия и теплопроводность. На этой стадии кинетическая модель реакции является одной из составляющих процесса, причем объем, в котором рассматривается химический процесс, выбирается с такими условиями, чтобы закономерности его протекания не зависели от размера реактора. Например, это может быть рассмотренное выше зерно катализатора. Далее полученная модель химического процесса как одна из составляющих элементов, в свою очередь, входит в следующий масштабный уровень - реакционную зону, в которую также входят и структурные закономерности потока, и явления переноса в ее масштабе. И, [c.94]

    Параметры, влияющие на жесткость пиролиза. Важнейший параметр процесса—температура—определяет степень превраш,е-ния исходных веш,еств по реакциям, протекаюш,нм при пиролизе. Так как первичные реакции термического разложения исходных веш,еств можно рассматривать как реакции первого кинетического порядка, скорости их протекания линейно зависят от концентрации исходных веш,еств, а степень разложения ие зависит от их концентрации, но зависит от температуры. От температуры зависит также и доля (из общего количества) образовавшихся на первой стадии различных радикалов, подлежащих распаду и, следовательно, выходы различных низших олефинов. Таким образом, температура процесса — фактор, определяющий как степень разложения исходного вещества (степень превращения), так и распределение продуктов пиролиза [199]. С увеличением температуры в результате первичной реакции повышаются выходы низших олефинов, метана и водорода и снижается выход алканов. [c.73]

    Наблюдаемый в реакции гидролиза кинетический изотопный эффект растворителя /гн о/ о о, равный 2,5—3, связан со стадией деацилирования. [c.143]


    Больщинство реакций сложны по механизму и состоят из ряда последовательных взаимодействий (стадий). Кинетические модели - сложные выражения, которые можно построить на основе механизма реакции. Характерный вид кинетической модели  [c.53]

    С другой стороны, при pH около 4 реакция приобретает кинетически более сложный характер, хотя аминоспирт, несомненно, по-прежнему является промежуточным соединением. При уменьшении кислотности понижается скорость превращения аминоспирта в оксим или аналогичное соединение, и эта стадия постепенно становится единственной лимитирующей. Поэтому весьма вероятно, что при pH около 7 строение переходного состояния сходно со строением аминоспирта и может быть изображено формулой типа 22. При этих значениях pH аминоспирт находится в подвижном равновесии с исходными реагентами и скорость его образования не влияет на скорость превращения в оксим или семикарбазон удельная скорость образования оксима или семикарбазона равна [c.160]

    Для большинства сложных реакций, включающих несколько элементарных стадий, кинетические уравнения обычно настолько сложны, что их можно точно решить только численным интегрированием, В то же время, разные константы скорости, входящие в эти уравнения, обычно отличаются друг от друга на много порядков, что позволяет при решении кинетических уравнений использовать приближенные методы. [c.213]

    Совокупность связанных друг с другом стадий (элементарных реакций), из которых состоит сложная реакция, называется механизмом реакции, точнее кинетическим механизмом реакции. [c.21]

    Механизм сложной реакции, представленный через элементарные реакции, называется кинетической схемой механизма реакции, в которой доказана каждая элементарная реакция (стадия) и ее связь с другими стадиями совокупного химического процесса. Совокупность элементарных реакций (стадий), отвечающая итоговому стехиометрическому уравнению, называется маршрутом реакции. Маршрут реакции окисления изопропилбензола в гидропероксид состоит из элементарных реакций 1.9 и [c.21]

    Подставив выражения коэффициентов адсорбции, констант скоростей отдельных стадий схемы механизма реакции в кинетическое уравнение и проведя его интегрирование, можно, таким образом, получить зфавнение скорости по всей неоднородной поверхности катализатора. [c.750]

    Обязательной стадией кинетического изучения реакции является определение порядков реакции по реагентам. Для этого обычно обращаются к одному из следующих способов  [c.50]

    Среди последовательных стадий обычно имеется самая медленная, для которой характеристическое время наибольшее. Общая скорость реакции определяется скоростью лимитирующей стадии. В выражении для скорости реакции ни кинетические, ни термодинамические характеристики стадий, следующих за лимитирующей, не фигурируют. [c.94]

    Для веществ, меченных дейтерием или тритием, различие в скоростях реакции по сравнению с соединениями, содержащими протий особенно велико вследствие большого различия в массах этих изотопов (1 2 или 1 3). В тех случаях, когда кц/ко или кц/кг равно 1, говорят, что кинетический изотопный эффект отсутствует. В этих реакциях стадия 3 является скоростьлимитирующей. Большинство реакций электрофильного замещения в ароматическом ряду не обнаруживают кинетического изотопного эффекта. [c.155]

    Наблюдения, что реакции нитрования в серной кислоте следуют второму кинетическому порядку, а в азотной кислоте первому порядку, мало разъясняют вопрос о механизме этой реакции. Однако нулевой порядок скорости, полученный в органических растворителях, а также следование этой реакции первому порядку для менее реакционноспособных соединений являются убедительными доказательствами в пользу того, что истинный механизм включает участие ароматического соединения и образование азотной кислотой определенного соединения на медленной, лимитирующей реакцию стадии. Таким веществом может быть только ион нитрония. [c.561]

    Очевидно, реакция меркурирования катализируется кислотой, поскольку цовышение концентрации азотной кислоты сопровождается повышением скорости реакции меркурирования. Серная кислота также ускоряет реакцию, а ион нитрата не оказывает влияния. При насыщении реакционной смеси бензолом реакция следует кинетическому закону первого порядка. Константа скорости второго порядка для реакции была получена путем деления константы скорости первого порядка на растворимость бензола в реакционной смеси. При проведении реакции оксинитрования в 50%-ной азотной кислоте и при 55° реакция меркурирования идет медленно, скорость этой стадии такая же, как и скорость всей реакции. [c.564]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    Температуры, при которых первая стадия крекинга переходит из кинетической во внутридиффузионную область и из внутри- во внешнедиффузионную, зависят от свойств сырья, активности катализатора, размера его пор и частиц. Для данного катализатора утяжеление сырья, повышая скорость реакции и снижая скорость диффузии, уменьшает температуры перехода. Для сырья заданного фракционного состава повышение в нем концентрации олефиновых и ароматических углеводородов, крекирующихся с большой скоростью, дает такой же эффект. При сырье заданного состава и катализаторе заданной активности переход реакции из кинетической области во внутридиффузионную осуществляется тем при меньшей температуре, чем меньше средний диаметр пор. На температуру пере.хода из внутридиффузионной области во внешнедиффузионную размер пор влияния Не оказывает. Этот переход осуществляется при катализаторе данной активности для данного сырья тем при, меньшей температуре, чем больше размеры частиц катализатора. Таким образом, максимально допустимая температура крекинга, при которой достигается переход первой стадии реакции во внешнедиффузиопную область, зависит от свойств сырья, активности катализатора и размера его частиц. На микросфериче-ском катализаторе при крекинге сырья, выкипающего в пределах 300—500 °С, внешнедиффузионная область достигается при 540— 560°С, на шариковом катализаторе зернением 3—5 мм —при 480—510°С. В кинетической области первая стадия крекинга имеет энергию активации около 30 ккал/моль. [c.221]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Явления самоорганизации, наблюдаемые при неустойчивости стационарного состояния и приводящие к образованию временных и пространственно-временных диссипативных структур, могут возникать при протекании только неустойчивых нелинейных брутто-реакций, в которых, как было показано в разд. 18.4.2, хотя бы одна из элементарных реакций является кинетически необратимой и одновременно нелинейной по интермедиатам. Четкие минимально достаточные требования к схеме процесса, в котором возникают временные неустойчивости, пока не сформулированы. Однако во всех известных к настоящему времени примерах таких реакций скорость образования продукта реакции на одной из промежуточных стадий как минимум квадратично зависит от концентраций интермедиатов. [c.384]

    Порядок реакции определяется кинетическим уравнением реакции и равен сумме показателей степеней при концентрациях в этом уравнении. Реакции могут быть нулевого, первого, второго и третьего (не выше), а также дробного порядка. Дробный порядок в особенности характерен для сложных реакций, протекающих через промежуточные стадии, т. е. имеющих более одного элементарного акта. Нулевой порядок наблюдается в таких гетерогенных реакциях, в которых скорость подвода реагирующего вещества во много раз больше скорости химического взаимодействия. В реакциях нулевого порядка скорость постоянна во времени w — onst. [c.230]

    Фотохимические процессы могут вызывать химические изменения веществ. Природа получаемых продуктов, а также скорости их образования могут быть определены обычными химическими методами, рассматривать их здесь нет необходимости. Больший интерес представляют экспериментальные методы, связанные с использованием световых измерений. Определения интенсивностей поглощаемого (а иногда испускаемого) света существенны для нахождения квантовых выходов, которые в свою очередь необходимы для оценки эффективности первичных фотохимических процессов. Квантовые выходы могут быть определены с помощью классических методов, т. е. при освещении постоянным светом. Кинетическое поведение реакционных систем в условиях постоянного освещения обычно согласуется с предположением о наличии стационарных концентраций промежуточных соединений реакций. Дополнительные кинетические данные (например, константы скорости отдельных стадий) можно получить в экспериментах, проводимых в нестационарных условиях. Это уже было продемонстрировано на примерах фотолиза (см. конец разд. 1.8) и флуоресценции (см. разд. 4.3). Фотохимические процессы идеально подходят для изучения в нестационарных условиях потому, что освещение можно включить и выключить очень быстро с помощью импульсной лампы или механического затвора. Часто нельзя аналогичным образом начать и остановить термические реакции (хотя ударные волны могут использоваться для быстрого нагревания в газовых системах). Эта глава начинается с обсуждения источников света, применяемых в фотохими- [c.178]

    Одной из основных задач химической кинетики является расчет скорости химических реакций. Скорость сложной реакции может быть рассчитана, если известны составляющие ее элементарные стадии, кинетические уравнения, описывающие эти стадии и численные значения констант скорости стадий. Поэтому определение кинетических уравнений и констант скорости эле.м.ентарных реакций является важнейшей задачей теории элементарных химических процессов. [c.86]

    Кинетическое исследование показало, что акцепторно-каталитическая этерификация имеет суммарный третий порядок (первый по каждому из реагентов), а лимитирующей скорость реакции стадией является взаимодействие комплекса I с фенолом или комплекса II с хлорангидридом [158-160]. Оказалось, что на скорость бензоилирования в присутствии ТЭА (диоксан, 30 °С) большое влияние оказывает кислотность фенолов, и на графике зависимости логарифма константы скорости реакции от рК фенолов в ДМСО (рис. 4.5) имеется два линейных участка с противоположным наклоном 1 А =-0,40рЛ"а4,88 для фенолов с рК < 14 и [ к = 0,39рАкд + 5,99 для фенолов с рК > 14. Это и позволило заключить, как было отмечено выше, что нуклеофильный катализ возможен при соблюдении условий  [c.48]

    Рассмотрим две эндотермические реакции 1 и 2 с различными наборами кинетических данных и разными тепловыми эффектами. Использовались кинетические параметры, полученные для первых двух стадий дегидратации пентагидрата сульфата меди. Литературные данные использовать не удалось. Расчеты по ним показали крайнюю неудовлетворительность по температурным интервалам реакций. Получены кинетические параметры для моделируемых условий с естественным вкладом обратной реакции. Эксперимент проводился в -дериватографе в условиях динамического нагрева при скорости 4 К/мин в держателе с крышкой. Расчет кинетических параметров и выбор вида кинетической функции /(а) проводились по программе ТА1В [2]. Для /(а) = (1 — а)  [c.85]

    Если реакция проходит ряд стадий, то итоговая скоросяь определяется скоростью наиболее медленной стадии реакции и кинетические измерения позволяют судить только об этой стадии. Примером может служить гидролиз третичных галоидных алкилов, которые при действии воды превращаются в спирты (в каком-либо растворителе) в две стадии  [c.92]

    Перегруппировка со сдвигом двойной связи может быть ката-лизована различными способами [109]. В присутствии очень сильных оснований проходит прототропная перегруппировка с образованием аллильного аниона, который затем репротонируется в другое положение (уравнение 204). Поскольку для аллильного аниона предпочтительна цисоидная геометрия, то на первых стадиях реакции осуществляется кинетический контроль, что обеспечивает преимущественное образование цис-томерг при изомеризации алке- 1 в алкен-2. Изомеризация, катализуемая основаниями, особенно удобна для превращения несопряженных диенов в сопряженные. [c.227]

    В данном случае имеет место трехстадийный процесс. На первой стадии образуется триоксид серы, который на второй стадии, определяющей скорость процесса, образует промежуточные вещества 1 или 2. Ниже ПО С эти параллельные реакции контролируются кинетически (см. раздел 1.5.8.3). Решающим фактором для соотношения образующихся продуктов 3 4 является отношение k k2 или АС (1) AG" (2) При применении принципа Хэммонда этот коэффициент приравнивается к отношению ApG(l) ApG(2). В рамках я-электронного приближения величина AG(1) равна разности между я-электронными энергиями промежуточного продукта 1 и нафталина. Аналогичные рассуждения применимы и к промежуточному соединению 2. Эти.разности называются энергиями локализации. Они представляют собой энергетические вклады, необходимые для локализации атомов соответственно С-1 или С-2, т. е. для выделения их 2pz-A0 с двумя электронами из сопря-оюенной системы. Таким образом рассчитывают я-электронные энергии нафталина и промежуточных продуктов 1 и 2, и из них получают значения энергий локализации A i и Отсюда следует, что A i < А г, поэтому промежуточное соединение I беднее энергией по сравнению с 2 и > А 2. Из рис. 1.5.12 ясно, почему эти параллельные реакп.ии при кинетическом и термодинамическом контроле дают различные конечные продукты. [c.189]

    Изучение кинетических закономерностей окисления 1,3-даоксациклоалканов диметилдиоксираном показало, что скорость реакции описывается кинетическим уравнением второго порядка . Бимолекулярная констан1а скорости максимальна для ацеталей, имеющих электронодонорные заместители во втором положении цикла. Был предложен и обоснован механизм реакции, лимитирующей стадией которого является внедрение атома кислорода по углерод-водородной связи гетероцикла. [c.82]


Смотреть страницы где упоминается термин Реакции стадия кинетическая: [c.183]    [c.105]    [c.107]    [c.142]    [c.326]    [c.369]    [c.92]    [c.128]   
Физическая и коллоидная химия (1988) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика и механизм радикальной полимеризации в начальных стадиях Элементарные реакции цепного механизма радикальной полимеризации и основные кинетические уравнения

Кинетические модели твердофазных реакций с различными лимитирующими стадиями

Предшествующие реакции рекомбинации с двумя последовательными замедленными стадиями. Уравнение предельного кинетического тока

Реакции кинетическая

Стадии гетерогенной химической реакции. Диффузионная и кинетическая области процесса



© 2025 chem21.info Реклама на сайте