Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расход водяного пара

    Общий расход водяного пара в атмосферные колонны для перегонки нефти составляет 1,2—3,5% (масс.), а в вакуумные колонны для перегонки мазута 5—8% (масс.) на сырье. При указанных расходах доля водяного пара в общем потоке паров в колонне колеблется от 8 до 50% (об.). [c.80]

    На рис. У1-26, а показана схема автоматизации процесса ректификации, в которой используют несколько контуров каскадного регулирования для управления расходами продуктов и теплоносителя в кипятильник [20], а на рис. У1-26, б приведена каскадная схема регулирования пропановой колонной [21]. В последней схеме расход орошения и расход хладоагента в конденсатор-холодильник регулируются с коррекцией по уровню в рефлюксной емкости отбор дистиллята производится по температуре жидкости на контрольной тарелке, давление в колонне регулируется изменением расхода водяного пара в кипятильник уровень жидкости в колонне регулируется отбором остатка. Применение такой схемы позволило исключить захлебывание конденсатора-холодильника.  [c.335]


    Основным недостатком вакуумной и глубоковакуумной перегонки с водяным паром являются высокие затраты из-за больших расходов водяного пара, подаваемого в печь, в низ колонны и на эжектор. Дополнительные затраты необходимы и на сооружение вакуумной колонны, печи, конденсаторов, системы эжекторов и другого оборудования. При глубоковакуумной перегонке мазута с водяным паром расход последнего, составляющий 2,5— 3% (масс.) на мазут, увеличивает объем паров в колонне на 25— 50%, вследствие чего резко возрастают габариты вакуумной колонны. Ниже приведены основные показатели процесса вакуумной перегонки мазута по топливному варианту на широкую масляную фракцию (вакуумный газойль) и остаток по схеме, изображенной на рис. 1П-21 [73]  [c.191]

    Обозначим расход водяного пара, отнесенный к количеству углеводородных паров, через [c.208]

    Удельный расход водяного пара, необходимый для обеспечения заданного отгона е при температуре системы Т, может быть вычислен по уравнению [c.65]

    Большое влияние на неравновесное состояние мазута оказывает также чрезмерный расход водяного пара в змеевик печи. Для приближения парожидкостного потока мазута к равновесным условиям на входе в вакуумную колонну рекомендуется время пребывания его в трансферном трубопроводе поддерживать не менее 0,85 с, а расход водяного пара, подаваемого в змеевик печи,— не более 0,3% (масс.). [c.76]

    В атмосферной колонне обычно принимают следующие числа тарелок (табл. 1.8). Расход водяного пара, подаваемого в низ колонны и в отпарные секции, принимается равным 0,2—0,3% (масс.) на нефть или 2—5% (масс.) на остаток либо продукт. Давление перегонки нефти определяется условиями конденсации пропан — бутановой смеси при 40 °С. При минимальной температуре охлаждающей воды л 30°С топливные фракции в верху колонны могут быть сконденсированы при атмосферном давлении. Поэтому в верху колонны давление принимается как можно меньшим с тем, чтобы обеспечить максимальный отбор светлых продуктов при заданной температуре сырья или обеспечить минимальную температуру сырья при заданном отборе светлых. В емкости орошения рекомендуется поддерживать давление порядка 35—70 гПа [70]. При определении давления в колонне следует учитывать изменение его по высоте колонны и принимать следующие перепады давления между верхней тарелкой и емкостью орошения 350 гПа, на одной тарелке 10—20 гПа, в трансферном трубопроводе 350 гПа. Таблица 1.8. Число тарелок в секциях аТмосферной колонны [c.94]

    Для определения р , необходимо знать расход водяного пара и молекулярный вес углеводородных паров Mxj = Maw- [c.209]


    При ректификации водяной пар применяется для отпаривания легких фракций от топливных или масляных дистиллятных фракций, а также от остатков перегонки — мазута и гудрона. Основное действие, которое оказывает водяной пар,—снижение парциального давления углеводородных паров, благодаря чему отпариваются легкие фракции. Поскольку при отпаривании тепло отнимается от самого потока, температура его понижается, и поэтому по мере увеличения расхода водяного пара масса отпариваемых фракций резко уменьшается. На рис. 1-39 показан типичный график зависимости массы отпариваемых фракций при атмосферном давлении от необходимого расхода водяного пара [68]. Как видно [c.79]

    Если обозначит], расход водяного пара в кг/кг абсорбента чере , г, то [c.248]

    Расчет постепенной перегонки с водяным паром при отгонке а моль летучего компонента [а = а —аа) из Ь моль нелетучего растворителя также может быть выполнен на основе закона Дальтона. Уравнение для определения требуемого расхода водяного пара 2 (моль) при постоянной температуре и давлении процесса имеет следующий вид [18]  [c.62]

Рис. 1-39. Зависимость массы отпариваемых фракций от расхода водяного пара Рис. 1-39. <a href="/info/16546">Зависимость массы</a> отпариваемых фракций от <a href="/info/68908">расхода водяного</a> пара
    Перечисленные недостатки заставляют ограничивать расход водяного пара или по возможности исключать полностью его применение. [c.81]

    Температура вспышки остатка 260 °С, потребный расход водяного пара в низ колонны составил 1590 кг/ч. [c.169]

    Конденсировать отгон отпарных секций можно также циркуляционными орошениями, обеспечивающими небольшой перепад давления [38]. С целью упрощения технологической схемы процесса при получении нескольких боковых погонов конденсацию отгона из отпарных секций предлагается проводить в одном конденсаторе и тогда суммарный отгон в жидкой фазе подавать в печь на входе в колонну (рис. 1И-18, а) [33]. Для снижения расхода водяного пара или затрат тепла на отделение легких фракций все отпарные секции предлагается соединить уходящими паровыми потоками и конденсировать только отгон верхней секции (рис. 111-18,6) [39]. [c.171]

    Рассмотрим сначала схемы регулирования отпарных и укрепляющих секций сложных колонн. Обычно расход жидкости в отпарную секцию изменяется по уровню, при этом отбор бокового погона стабилиздруетея—(рнс. У1-30) или кор-ректируется по температуре в колонне под тарелкой отбора [25]. Указанные схемы регулирования работы отпарных колонн характеризуются жесткой динамической связью между отдельными секциями колонны, В связи с этим предлагаются различные усовершенствованные схемы регулирования. Например, подача жидкости в отпарные секции по температуре паров в колонну выше точки отбора (рис. У1-31,а), с выводом бокового погона в зависимости от изменения уровня [26] и с регулированием расхода водяного пара в отпарную секцию с коррекцией по составу бокового погона (рис. У1-31,б). [c.339]

    Расход водяного пара в Я 5, % (масс.) на [c.182]

    Пусть та же нсходная смесь подвергается уже непрерывной перегонке при атмосферном давлении п температуре 100 -С, а ее часовой расход составляет 16 000 кг/ч. Расход водяного пара, требующийся для снижения содержания и-гептана от начальной концентрации х[ =4,0 до конечной х =0,0527, можно найтп по уравнению (11.47) [c.83]

    Сравнение схем двукратного испарения мазута по широкой масляной фракции и по остатку показывает, что первая схема является предпочтительной с точки зрения энергетических затрат. Кроме того, последующий нагрев более тяжелого сырья связан с большей опасностью его термической деструкции и требует повышенного расхода водяного пара на создание вакуума. В то же время схема двукратного испарения по остатку позволяет получить более узкие масляные фракции и понижение давления при этом требуется для более вязкого, тяжелого продукта. По приведенным же затратам схемы одно- и двукратного испарения мало различаются между собой. [c.187]

    Для четкого разделения мазута на широкую масляную фракцию и утяжеленный остаток перегонку предлагается проводить в две ступени — двукратным испарением по остатку (рис. П1-32) [75]. В I ступени отпариваются легкие фракции и удаляются неконденсируемые газы при помощи водяного пара и во И ступени утяжеленный мазут перегоняется при глубоком вакууме в оросительной колонне. Колонна имеет две секции охлаждения и конденсации тяжелого и легкого вакуумного газойлей. Орошение в виде распыленной жидкости создается форсунками. Параметры разделения во И ступени давление 0,133—266 Па, температура питания 380—400°С, расход водяного пара в I ступени не более [c.193]


    Схема по рис. 111-35, е с предварительным эжектором применяется для дополнительного понижения давления в колонне и создания глубокого вакуума (порядка 6,7—13,3 гПа). Поскольку через предварительный эжектор проходит весь объем паров из колонны, размеры его достаточно велики и значителен расход водяного пара на эжекцию, поэтому такие схемы применяют редко. [c.199]

    В конденсаторах вакуумсоздающих систем при 30°С не удается полностью сконденсировать газовую фазу и на 1 кг водяного пара в эжектор поступает от 0,05 до 0,66 кг углеводородов, главным образом фракции выше 350°С (до 4,2—57о на мазут). Чем легче по фракционному составу газойлевые фракции, тем значительнее их потери с водяным паром, достигающие 2—3 кг/жг водяного пара для фракций со средней температурой кипения 200— 220°С [81] (рис. III-37). Из приведенных данных видно, что снижение расхода водяного пара в колонне приводит также к сокращению потерь газойлевых фракций в вакуумсоздающих системах. [c.202]

    При расчете ректификации нефтяных смесей, как известно, наибольшую сложность вызывает расчет перегонки нефти в атмосферной колонне. В связи с этим рассмотрим некоторыг рекомендации, касающиеся выбора числа тарелок в колонне, расхода водяного пара, давления процесса и опособов определения температур потоков для первого приближения в расчете. [c.94]

    Легко видеть, что расход водяного пара на перегонку растет с увеличением давления р, под которым находится система. [c.79]

    Если разделить общий потребный на перегонку расход водяного пара на его количество, подаваемое в единицу времени, можно определить время, в течение которого осуществляется перегонка. [c.80]

    Рассмотрим постепенную перегонку бинарной углеводородной системы полностью растворимых друг в друге летучего компонента а и практически нелетучего компонента ю при постоянных температуре, давлении и расходе водяного пара и рассчитаем время перегонки для снижения концентрации летучего компонента а от некоторого начального до заданного конечного значения. [c.80]

    Для случая, когда расход водяного пара непостоянен во времени, но перегонка ведется при постоянной температуре, расчетное уравнение (11.45), очевидно, приходит к виду [c.81]

    Расход водяного пара равен [c.82]

    При заданных начальных давлении и температуре перегонки по равенству (11.58) рассчитывается значение ф далее по уравнению (11.54) определяется расход водяного пара, затрачиваемого на полный отгон всей исходной углеводородной системы. [c.89]

    Уравнение (219) позволяет опред елить необходимы) расход водяного пара, если известно иарциалыюс давление углеводородных паров. Если задан расход водяного пара, можно определить парциальное давлепие углеводородных наров по уравнению [c.208]

    Расходом водяного пара обычно задаются молекулярный вес углегюдородных паров зависит от доли отгона. [c.209]

    Перегонка мазута на масла обычно ведется под вакуумом в присутствии водяного пара. Углубленно вакуума позволяет снизить или полностью исключить расход водяного пара, что улучшает техиико-. кономические показатели проце -а. [c.226]

    Обследование работы вакуумных колонн с внутренними отпарными секциями показаЛо [69], что температура выкипания 5% (по Богданову) масляных фракций повышается на 15—33°С и температура выкипания 95% — на 2—10°С. Сужение фракционного состава масляных фракций повышает их коксуемость, показатель преломления, вязкость и температуру вспышки. При расходе водяного пара в отпарные секции в пределах 1.5—4.4% (масс.) на остаток температура вспышки повысилась от 6 до 34 °С, вязкость при 50 °С — на 1,4—4,3 мм7с, коксуемость в [c.190]

    Для углубления отбора широкой масляной фракции до 520— 530 °С и получения утяжеленных остатков в настоящее ремя не-пользуют обычно простейшие схемы вакуумной перегонки с водяным паром при давлении в секции питания 67—200 гПа или глубоковакуумную перегонку без водяного пара при 13—33 гПа. Глубоковакуум ная перегонка мазута с водяным паром может быть использована также для получения дорожных битумов в виде остатков вакуумной перегонки [72]. При давлении перегонки от 6 до 13 гПа требуется сравнительно невысокий расход водяного пара — от 5 до 20% (масс.) на сырье. [c.191]

    Перед замещением инертного газа на водяной пар необходимо убедиться, что в последнем не содержится конденсата. Далее температура в слое катализатора поднимается до 370—420 °С, проводится пропарка катализатора водяным паром с целью десорбции из пор катализатора жидкпх остатков и удаления части высокомолекулярных отложений, наиболее богатых водородом. Продолжительность пропарки2—4ч при расходе водяного пара 400—900 м /ч (при нормальных условиях) на 1 м катализатора. [c.130]

    Водяной пар, подаваемый в низ колонн, поднимается вверх вм( сте с парами, образующимися при испарении жидкости (кубового остатка или бокового погона), вступая на вышерасположенной тарелке в контакт со стекающей жидкостью. В результате тепло— и мае сообмена в жидкости, стекающей с тарелки на тарелку, концен — трация низкокипящего компонента убывает в направлении сверху вниз. В этом же направлении убывает и температура на тарелках вследствие испарения части жидкости. Причем, чем большее коли — чесгво подается водяного пара и ниже его параметры (температура и давление), тем до более низкой температуры охладится кубовая жидкость. Таким образом, эффект ректификации и испаряющееся действие водяного пара будут снижаться на каждой последующей тарелке. Следовател1эНо, увеличивать количество отпарных тарелок и расход водяного пара целесообразно до определенных пределов. Наибольший эффект испаряющего влияния перегретого водяного пара проявляется при его расходе, равном 1,5 —2,0 % масс, на исходное сырье. Общий расход водяного пара в атмосферные колонны установок перегонки нефти составляет 1,2 —3,5, а в вакуумные колонны для перегонки мазута — 5 —8 % масс, на перегоня — ем( е сырье. [c.173]

    Давление оказы — вает отрицательное ву ияние на равновесие основной реакции конверсии метана и п< этому требуется бо — лее высокая температура для достижения Рис. 9.I. Зависимости равновесной концентрации 0/1,ИНаК0В0Й степени метана при паровой конверсии метана от температуры (цифры на нижних кривых), давления и превращения углево мольного расхода водяного пара (цифры на верхних [c.156]

Рис. 9.. . Зависимости равновесной концентрации ме пана при паровой конверсии прямогонного бензина от температуры (цифры на нижних кривьи I, давления и мольного расхода водяного пара (цифры иа верхних кривых) Рис. 9.. . <a href="/info/1803797">Зависимости равновесной концентрации</a> ме пана при <a href="/info/146441">паровой конверсии</a> <a href="/info/76722">прямогонного бензина</a> от температуры (цифры на <a href="/info/130984">нижних кривьи</a> I, давления и мольного расхода водяного пара (цифры иа верхних кривых)
    Пример П.З. Исходная углеводородная смесь, состоящая йз раствора 80 кмоль летучего компонента а (н-гентана, ЛГд=100) н 20 кмоль практи-ческп нелетучего тяжелого масла и> (ЛГш=400), подвергается постепенной перегонке при атмосферном давлешш и температуре 100,0 °С, при которой давление насыщенных паров к-гептана Рд=0,106124 МПа. Требуется найтп время, в теченце которого содержаппе летучего компонента в остатке перегонки понизится до 5 мол. %, еслп расход водяного пара составляет 20 кмоль/ч, эффективность =0,9, а коэффициент активности уа -гептана для условий перегонки можно принять равным единице. [c.82]

    Расход водяного пара, отнесенный к единице массы нижнего ародукта г г ь 0,039 [c.243]

    При заданных начальных услопнях давлепия и температуры нерегонки рассчитывается но (111.55) значение N, далее но (111.49) определяется расход водяного пара, затрачиваемый на полный отгон всей исходной углеводородной спстемы. [c.113]


Смотреть страницы где упоминается термин Расход водяного пара: [c.209]    [c.222]    [c.248]    [c.8]    [c.65]    [c.80]    [c.194]    [c.198]    [c.195]    [c.200]   
Смотреть главы в:

Переработка нефти -> Расход водяного пара


Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте