Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение энергии при разрыве цепи

    Термоокислительные механизмы деструкции часто сопутствуют механохимическим реакциям в расплаве полимера, который обычно имеет высокую температуру. Эксперимент показал, что термоокислительные реакции идут с большей интенсивностью под действием сдвиговых напряжений, чем в их отсутствие при той же температуре [34, 232, 233, 266, 271, 420, 682, 832, 883]. Независимо от типа деструкции (термическая или окислительная) накопление в цепях механической энергии приводит к значительному снижению температуры, необходимой для протекания этих процессов. При этом надо исключить любое увеличение температуры под действием деформирования. Отмеченное явление, таким образом, согласуется с известным влиянием сдвига на изменение потенциальной энергии разрыва связей [34]. Это соображение подтверждается экспериментами Регеля с сотр. [629, 631, 893, 895, 896, 1141, 1143, 1170, 1197—1199], которые исследовали летучие продукты, образующиеся при разрушении полимеров под действием постоянного растягивающего напряжения. Для ряда полимеров эти продукты оказались идентичными по составу с теми, которые образуются при термодеструкции [1197, 1199]. Скорость выделения газов экспоненциально растет с увеличением приложенного напряжения. Согласно Регелю, это означает, что механодеструкцию можно рассматривать как термодеструкцию, активированную напряжением. В частности, в указанных работах говорится, что механическое напряжение активирует разрыв макромолекул за счет снижения энергии активации процесса и препятствует рекомбинации разорванных молекул, растягивая их в разные стороны. Поэтому механодеструкция идет при температуре, которая значительно ниже температуры термодеструкции [629, с. 163]. В [629] была определена энергия активации процесса механодеструкции многих полимеров. Детально различные теоретические представления рассмотрены в следующем разделе. [c.21]


    Действительно ли разрыв цепи оказывает влияние на механические свойства полимерной системы косвенным образом, т. е. путем выделения накопленной энергии упругой деформации или посредством последующих реакций радикалов  [c.229]

    Образование веществ с системой сопряженных связей сопровождается выделением большого количества тепла и уменьшением свободной энергии, благодаря чему они обладают значительной стойкостью. Большая концентрация л-сопряжений в углеродных волокнах придает им исключительно высокую теплостойкость. Кроме того, развитая система сетчатых связей препятствует протеканию процессов термической деструкции. Если для деструкции линейного полимера достаточно разрыва одной связи между атомами основной цепи, то деструкции сетчатого полимера должен предшествовать разрыв большого числа связей, что мало вероятно. [c.274]

    С повышением температуры реакции гидрокрекинга усиливаются, при этом происходит разрыв связей С—С, например при деалкилировании, яри разрыве цепей и колец. Бели парциальное давление водорода недостаточно высоко, то одновременно разрываются и связи С—Н, что сопровождается выделением водорода и образованием олефиновых и ароматических углеводородов. Это объясняется также тем, что связь С—С менее прочна и реакционноспособна, чем связь С—Н. Энергия связи С—С составляет от 247 до 263,8 кДж/моль (от 59 до 63 -ккал/моль). В цепях н-алканов связи СНз—СНа несколько слабее неконцевых связей СНг— СН2. Циклопарафиновые кольца устойчивы, и их гидрогенолиз протекает в малой степени. Циклогексаны СюНго и выше распадаются с образованием в основном изобутана и циклопарафина, имеющего на 4 атома углерода меньше, чем исходный. Образующиеся циклопарафины представлены в основном циклопентанами. При невысоких температурах эта реакция, особенно характерная для гидрокрекинга, проходит с довольно высокой селективностью. [c.209]

    Для объяснения указанных явлений плодотворны механо-химй-ческие представления, рассматривающие глинистые агрегаты как блоки макромолекул. Их анизометрия и микродефекты обусловливают неравномерное распределение напряжений даже при весьма малых деформациях. На отдельных участках они значительно превышают молекулярные силы, скрепляющие между собой агрегаты и пачки частиц, и могут даже достигать критических значений, больших, чем энергия ковалентных связей, действующих внутри решетки. Это приводит к разрыву агрегатов. И здесь деструкция идет лишь до определенного предела с выделением объемных фрагментов, величина которых определяется числом кристаллохимических дефектов. При растяжении или сдвиге внутри щчек в первую очередь нарушаются связи между отдельными блоками, но но мере возрастания межатомных расстояний происходит разрыв ковалентных связей, что вызывает механическую активизацию химических реакций. Например, А. С. Кузьминский установил, что при окислении растянутого каучука энергия активации надает до 3 ккал/моль. В результате становятся возможны реакции, типичные для свободных радикалов. У глины это может усилить ее реакционную способность. У классических полимеров при отсутствии акцепторов наиболее вероятны реко1 биЕации, сращивание цепей, восстановление ковалентных связей. В присутствии различных акцепторов, которыми могут являться примеси или специально введенные вещества, [c.79]


    Таким образом, постепенная генерация белковой последовательности и анализ на каждом этапе большого числа конформационных состояний фрагментов Arg -Lys , Arg -Arg , Arg -Asn и Arg -Lys привели в конечном счете к выделению из многочисленных, практически изознергетич-fux структурных вариантов свободного участка ys -Ser единственной реальной трехмерной структуры фрагмента Arg -Lys . Ее однозначная детерминация определяется предпочтительностью участка ys -Lys образовывать стабилизирующие контакты с удаленными по цепи остатками щ согласованностью между всеми средними и дальними взаимодействиями. Присоединение остатка Ser , обладающего небольшой боковой цепью, естественно, не может существенно повлиять на энергетическое распределение конформаций фрагмента Arg -Ser по сравнению с фрагментом Arg -Lys . Учитывая это обстоятельство и большой разрыв в энергии глобальной и следующих за ней структур, для дальнейшего анализа пространственного строения молекулы БПТИ оставлена лишь конформация Arg -Lys типа/ / з (t/общ = О ккал/моль) (см. табл. IV.11). [c.455]

    Александер, Чарлзби и Росс [8] предположили, что разрыв может происходить в результате перегруппировки, претерпеваемой возбужденным участком полимерной цепи, без образования радикалов, имеющих продолжительность жизни, достаточную для того, чтобы их можно было обнаружить. Этот механизм описывается уравнением (1) на стр. 65, где Я представляет собой группу СООСНз там же обсуждаются как эта, так и другая гипотезы. Оба механизма разрыва цепи (вследствие перегруппировки или в результате разрыва с диспропорционированием) приводят к одинаковому результату и поэтому находятся в согласии с экспериментально установленным фактом, что в облученных полимерах появляется ненасыщенность (вероятно, сопряженные двойные связи). Ни в одном из этих механизмов не принимается во внимание деструкция боковых цепей. По-видимому, не является случайностью, что на каждую деструктиро-ванную боковую цепь приходится один разрыв в главной цепи. В самом деле, очень вероятно, что локально выделенного количества энергии, достаточного, чтобы разложить группу — [c.145]

    Радиационное разложение определяется как вынужденный разрыв химической связи под действием облучения, сопровождающийся образованием молекул меньшего (по сравнению с исходным) молекулярного веса. Может оказаться, что при поглощении энергии облучения произойдет разрыв многих связей, но часть из них быстро восстановится, так что эти разрывы не удастся наблюдать. В полиэтилене, например, энергия С — С-связи значительно меньше, чем энергия С — Н-связи. Поэтому происходит преимущественный разрыв С — Н-связей. Вероятно, при разрыве С — С-связи два образовавшихся длинных фрагмента цепи жестко связаны в твердой матрице и имеют возможность воссоединиться. При облучении газообразных углеводородов (этан, пропан, бутан) а-частицами от родонового источника соотношение количеств образовавшихся водорода и метана для всех указанных газов одинаково и равно 5 1. Теоретического обоснования столь точного выполнения указанного соотношения не имеется . При облучении неопентана отношение СН4 Нг равно единице. В неопентане на 4С — С-связи приходится 12СН-связей. Эти сведения приводятся для того, чтобы акцентировать внимание на возможности разрыва С — С-связи при облучении. Разумеется, выделение низкомолекулярных углеводородов из полиэтилена низкой плотности, полипропилена и других полимеров во время облучения свидетельствует о необратимом разрыве С — С-связей. В этих случаях образуются фрагменты, достаточно подвижные, чтобы выйти из матрицы. [c.435]


Смотреть страницы где упоминается термин Выделение энергии при разрыве цепи: [c.321]    [c.321]    [c.331]    [c.115]    [c.35]   
Смотреть главы в:

Разрушение полимеров -> Выделение энергии при разрыве цепи




ПОИСК







© 2025 chem21.info Реклама на сайте