Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительные свойства двуокиси углерода

    По своему химическому существу и по характеру влияния на технические свойства конечных продуктов реакция образования кислородных мостиков между молекулами смолы во время окисления битумов напоминает процесс вулканизации каучука серой. И в том и в другом случае идет образование трехмерных структур, в результате чего продукт становится более твердым, менее растворимым, менее мягким и химически более стойким. В зависимости от глубины этого процесса можно получить технические битумы со свойствами, варьирующими в весьма широких пределах — от полужидких текучих продуктов до твердых хрупких асфальтенов. Сравнительно небольшое количество кислорода остается связанным в окисленном битуме, большая же часть его идет на образование летучих продуктов окисления (вода, окись и двуокись углерода, органические кислородсодержащие соединения). Характер распределения кислорода в продуктах окисления гудрона и крекинг-остатка (при 275° С) на разных стадиях процесса приведен на рис. 20. Окислительная дегидрогенизация сырья, сопровождающаяся образованием воды, является основной реакцией, потребляющей в случае окисления гудрона 90% в начальной стадии и 69% в конечной общего расхода кислорода. Доля других кислородсодержащих соединений в потреблении кислорода значительно возрастает к концу процесса (31% для гудрона и 42% для крекинг-остатка), когда интенсивность окислительной дегидрогенизации постепенно ослабляется [46]. [c.135]


    Двуокись углерода при высоких температурах обладает окислительными свойствами. Щелочные и щелочноземельные металлы горят в атмосфере СО  [c.204]

    При высоких температурах окислительные свойства проявляет двуокись углерода (в ней горят щелочные и щелочноземельные металлы)  [c.217]

    Таким образом, в расплаве одновременно присутствует несколько валентных форм марганца, имеющих тенденцию к достижению максимальной валентности в этих условиях +5 и +6. Соединения марганца в высших степенях окисления проявляют окислительные свойства. Образование этих соединений в расплаве играет особую роль при окислении графита при более высоких температурах (670—870 К) и предотвращает образование окиси углерода, являясь селективным катализатором для перевода окиси углерода в двуокись. [c.469]

    Придание факелу (пламени) определенных радиационных свойств является вторым условием развития высокотемпературного технологического процесса в пламенных печах. В печах требуется поддерживать газовую атмосферу с определенными свойствами — окислительную, нейтральную или восстановительную. Окислительная атмосфера, например, имеет место в сталеплавильных агрегатах, где из расплавленного металла выжигаются углерод и другие элементы. Наоборот, если при нагреве металла в кузнечных, прокатных и термических печах имеет место окисление, то оно не только приводит к потере металла в окалину, но и вызывает необходимость затрачивать труд на удаление окалины с поверхности, а также сопровождается увеличением расхода топлива из-за ухудшения теплопередачи. Окисление металла вызывают содержащиеся в продуктах сгорания кислород О2, двуокись углерода СО2, сернистый газ ЗОа и водяные пары Н2О. Наряду с окислением в процессе нагрева имеет место и обезуглероживание поверхностного слоя стали, вызываемое взаимодействием водяных паров, двуокиси углерода и кислорода с металлом. [c.12]

    Газы, обладающие окислительными свойствами, а также газы, содержащие сернистый ангидрид, и, особенно, сероводород, вызывают сильную коррозию меди. Двуокись углерода практически не действует на медь, что используется при создании защитной атмосферы в печах для отжига меди. Азот также не действует на медь. [c.141]

    Например, примесь кислорода в азоте и водороде можно определить колориметрическим методом ло реакции с солями меди (1) при в1Г0 содержании 1 10 % объдан. (при объеме пробы 0,5 л). Однако колориметрические методы не при-. годны для определевия примеси кислорода в, хлоре, сероводо- роде, цианистом водороде, двуокиси углерод и в некоторых других газах. Определение примеси окиси и двуокиси углерода невозможно проводить в присутствии всех газов с кислотными свойствами. Определению примеси лор мешают газы, обла-. дающие окислительными или восстановительными свойствами двуокись азота, озон, двуокись серы, сероводород и другие. Подобные случаи довольно часты и они вынуждают экспериментатора для оценки чистоты газов применять большей частью физические методы. [c.79]


    В главе XIV мы увидим доказательства в пользу существования хлорофилл-белкового комплекса. Сохранность этого комплекса может быть необходима для фотосинтетической способности хлорофилла. Были разработаны различные методы экстрагирования этого комплекса из листьев, и оказалось, что такие экстракты имеют некоторые из свойств хлорофилла в листе (например, абсорбционный спектр, химическая устойчивость и флуоресценция). Однако и у них отсутствовала фотосинтетическая активность. Эйслер и Порт-гейм [21] сообщили, что искусственные хлорофилл-белковые комплексы, приготовленные добавлением лошадиного серума к хлоро-фильным растворам, могут восстанавливать двуокись углерода и выделять кислород на свету однако методы этих исследователей были грубы и отсутствовало детальное изложение опытов. Нет ничего удивительного в том, что хлорофилл-белковые комплексы неспособны к фотосинтезу, если вспомнить, что изолированные хлоропласты в лучшем случае сохраняют лишь часть своей нормальной фото-синтетической активности. Речь идет не о том, способны ли хлорофильные препараты к полному фотосинтезу, а о том, сохраняются ли в них какие-либо свойства, связанные с ролью хлорофилла в фотосинтезе. Как указано в главе Ш, эта роль сводится к утилизации световой энергии для переноса водородных атомов против градиента химического потенциала. Хлорофилл может это осуществлять или путем чисто физического переноса энергии к клеточной окислительно-восстановительной системе, или же, что более вероятно, прямым химическим участием в этой системе. Отсюда, следовательно, и возникает вопрос, образует ли хлорофилл in vitro окислительно-восстановительную систему, а если это происходит, то увеличивается ли при поглощении света окислительная способность окисленной формы или восстановительная способность восстановленной формы (или и то и другое). [c.73]

    По Холланду, восстановительная атмосфера оставалась таковой около 5 10 лет разложение аммиака с выделением азота, а также превращения метана в двуокись углерода ослабили восстановительные свойства атмосферы и ознаменовали собой вторую стадию ее эволюции. В третьей стадии, которая началась 1,8 10 лет тому назад, атмосфера стала уже окислительной. Предполагают, что появление первых форм жизни произошло приблизительно 2,7 10 лет тому назад. [c.139]

    Во-первых, они универсальны, т. е. действие их распространяется одновременно на все газы, кроме инертных, которые могут присутствовать в электронных лампах (водород, кислород, азот, окись и двуокись углерода, пары воды, углеводороды), независимо от окислительного или восстановительного характера последних. Во-вторых, материал поглотителя сочетает свойства активности и инертности и, будучи устойчивым на воздухе, переводится в реак-дионноспособную форму путем нагревания при пониженном давлении. Устойчивость поглотителя необходима для проведения монтажных и откачных операций, и действие его проявляется лишь после удаления основной массы газов из оболочки лампы, т. е. при lO — 10 мм рт. ст. Наконец, упругость паров вещества поглотителя при его рабочей температуре ничтожно мала. - [c.8]

    Требования к чистоте этилена. В результате подробных и точных работ Цорна и его сотрудников стало известно, что удовлетворительное проведение нолимеризации и свойства смазочных масел зависят от чистоты этилена [53]. В этилене должны совершенно отсутствовать кислород и сера, а также их соединения, окись углерода, двуокись углерода, сероводород, сероокись углерода, меркаптаны, альдегиды, спирты, эфиры и т. п. В техническом этилене в зависимости от его происхождения такие загрязнения содержатся в большем или меньшем количестве, часто только в следах. Так, при дегидратации этилового спирта всегда образуется некоторое количество ацетальдегида, который, правда, содержится в очень незначительных количествах и может быть обнаружен лишь тончайшими аналитическими средствами. Однако этого количества уиге достаточно, чтобы оказать отрицательное влияние па процесс нолимеризации, вследствие чего качество или выход продуктов полимеризации или оба фактора одновременно ухудшаются. Совершенно незначительные количества окиси или двуокиси углерода, которые содержатся в этилене, полученном из коксовых газов или окислительным дегидрированием этана, сильно ухудшают вязкостно-температурные свойства полимера или немедленно подавляют процесс полимеризации вообще. Так, например, содержание 0,01% окиси углерода в этилене полностью подавляет полимеризацию. [c.595]


Смотреть страницы где упоминается термин Окислительные свойства двуокиси углерода: [c.249]    [c.566]    [c.595]   
Смотреть главы в:

Практикум по общей и неорганической химии с применением полумикрометода -> Окислительные свойства двуокиси углерода




ПОИСК





Смотрите так же термины и статьи:

Двуокись углерода, свойства

Углерод свойства



© 2025 chem21.info Реклама на сайте