Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газо-жидкостная хроматография также Хроматография

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]


    В работе описаны современные практические данные по анализу высших жирных кислот методом обращенно-фазовой распределительной хроматографии на бумаге, по исследованию состава жирных кислот методом тонкослойной и колоночной хроматографии, по анализу жирных кислот методом газо-жидкостной хроматографии, также по исследованию липидов методом адсорбционной и распределительной хроматографии и в тонком слое силикагеля. Детально описываются все этапы практического производства качественного и количественного анализа в условиях лаборатории, необходимые реактивы, условия проведения исследований и т. д. [c.2]

    Причина, определяющая большую роль внешней диффузии в капиллярной хроматографии, чем в газо-жидкостной, заключается в том, что путь внутренней диффузии (толщина пленки б) мал по сравнению с путем внешней диффузии (диаметр капилляра). При малых количествах неподвижной фазы и больших значениях размывание и в газо-жидкостной хроматографии также определяется внешней диффузией. [c.117]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]

    Хроматографическое разделение продуктов взаимодействия окиси этилена и окиси пропилена-с алкилфенолами, жирными спиртами и кислотами в тонком слое адсорбента по сравнению с разделением методом газо-жидкостной хроматографии методически и в аппаратурном отношении более просто и позволяет анализировать соединения с большим числом присоединенных оксиалкильных групп. К недостаткам метода тонкослойной хроматографии следует отнести в общем полу-количественный характер получаемых результатов, а также менее четкое по сравнению с газо-жидкостной хроматографией разделение на компоненты продуктов оксиалкилирования с невысокой молекулярной массой. Однако разделение методом тонкослойной хроматографии эффективно для быстрой оценка воспроизводимости параллельных опытов оксиалкилирования, для идентификации продуктов оксиалкилирования и определения их молекулярно-массового распределения. [c.218]


    Метод газо-жидкостной хроматографии также показал, что в продуктах дегидратации в заметных концентрациях присутствуют не три, а по крайней мере пять соединений образование такого числа соединений можно было объяснить, допуская вторичную миграцию двойной связи из - в а-положение с образованием сопряженной группировки— S—С С<. Последнему типу структур отвечают формулы (V) и (VI). По-видимому, рассматриваемые структуры охватывают все возможные изомеры, образующиеся в соизмеримых концентрациях при данном синтезе. [c.178]

    Метод газо-жидкостной хроматографии также применяется для идентификации некоторых полиацетиленовых соединений, главным образом гомологов диацетилена. Кроме того, этот метод может быть использован для исследования некоторых термодинамических свойств растворов ацетиленовых углеводородов при температурах от —35 до -f25° 1521]. [c.80]

    Чаще всего используют водород, азот и гелий ввиду того, что они обеспечивают наибольшую чувствительность прибора для определения плотности газа, пламенных и ионизационных детекторов, а также катарометров. Так как водород и гелий по сравнению с органическими соединениями обладают значительно более высокой теплопроводностью, эти газы преимущественно используют в качестве подвижных фаз при дифференциальном методе измерения теплопроводности. Чем больше различие в теплопроводности, тем больше изменение температуры и, следовательно, сопротивления и тем больше чувствительность измерительного устройства. Обычно при газо-жидкостной хроматографии применяют скорости потока газа-носителя порядка 10—100 мл мин. [c.55]

    В настоящее время газо-жидкостная хроматография, представляющая собой одну из разновидностей разделительной техники, является ведущим методом анализа, значение которого сравнивается со значением методов ректификации и экстракции, а также и со значением спектроскопических методов. Ректификация, обычно применяемая в лабораторной практике для разделения сложных газовых смесей, требует большой затраты времени, значительное количество газа, жидкого азота и не может обеспечить эффективности, достаточной для четкого разделения смеси компонентов, кипящих в пределах одного градуса. Газо-жидкостная хроматография обеспечивает степень разделения, соответствующую тысячам теоретических тарелок. При этом на хроматографическое разделение затрачиваются минуты, на ректификацию — несколько часов. [c.263]

    Метод газо-жидкостной хроматографии также используется для определения примесей [273]. Оп целение складывается из двух операций 1) выделения примесей на укрупненной хроматографической колонке и 2) анализа полученных примесей на колонке обычного размера. [c.328]

    Методом газо-жидкостной хроматографии по накоплению ацетофенона при разложении перекиси (III) были изучены кинетические характеристики реакции (3). Константы скорости этой реакции в интервале температур 180—210°С могут быть рассчитаны по уравнению gk= = (12,0 0,6) —(143500 3000)/RT, энтропия активации AS равна —25 2 Дж/(моль-К)- Отрицательная энтропия активации подтверждает образование жесткого циклического комплекса в переходном состоянии реакции (3). Выход ацетофенона (0,19 моля на моль перекиси) при разложении перекиси (III) в толуоле не изменяется в присутствии ловушки радикалов. В качестве ловущки радикалов был использован йод [6]. Выход радикальных продуктов (бензальдегида, а-фенилэтилового спирта) существенно снижается. Это также подтверждает нерадикальный характер реакции (3). [c.50]

    Соотношение парафиновых и нафтеновых углеводородов во многих случаях представляет интерес, поскольку оно характеризует свойства топлива. Поэтому разработка удобных и достаточно точных методов для указанной цели весьма полезна. Такие методы могут быть основаны, например, на газо-жидкостной хроматографии, спектральном анализе. Можно также использовать химические методы расчленения насыщенной части топлива, с выделением нормальных парафиновых углеводородов (комплексы с карбамидом и тиокарбамидом), шестичленных нафтеновых углеводородов (каталитической дегидрогенизацией) и др. [2, 27, 121]. [c.147]

    Многие исследователи считают, что разделительные процессы на пористых полимерах отличаются от процессов газо-жидкостной и газо-адсорбционной хроматографии, что здесь одновременно протекают процессы адсорбции и абсорбции. Следует отметить, что пористые полимеры применяются как высокоселективные адсорбенты в газо-адсорбционной и жидкостно-адсорбционной хроматографии для разделения многокомпонентных смесей, а также и в качестве носителей в газо-жидкостной хроматографии. По-видимому, этим сорбентам принадлежит большое будуш,ее. [c.58]

    Первоначально капилляры применяли только в газо-жидкостной хроматографии, т. е. внутреннюю поверхность капилляра покрывали пленкой жидкой неподвижной фазы. Однако последующее развитие капиллярной хроматографии позволило установить, что стенки капилляра, покрытые тонким слоем твердого вещества, также могут работать в качестве адсорбента. [c.203]

    Для решения подобных задач следует применять преимущественно микроаналитические методы, какими являются бумажная, тонкослойная (см. разд. А, 2.6.3) и газо-жидкостная хроматография (см. разд. А, 2.5.4.3), При анализе природных веществ успешно применяется также жидкостная экстракция (распределение по Крейгу). [c.324]


    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета- и лара-изомеры, изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1—10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувствительном и неинерционном детекторе. Наилучшим оказался пламенно-ионизационный детектор. [c.117]

    Разграничение методов хроматографического разделения смесей по признаку применения их в неорганическом либо в органическом анализе явилось бы условным. Например, газо-жидкостная хроматография недавно нашла применение в неорганическом анализе для разделения хе-латных соединений металлов [3] известны также работы по применению газовой хроматографии для определения четыреххлористого германия в смеси с другими хлоридами [4]. [c.9]

    ГОСТ 13379—67 установлена стандартная методика определения содержания углеводорода С2—С5 в нефти также методом газо-жидкостной хроматографии с использованием хроматографа ХЛ-4. [c.61]

    Метод газо-жидкостной хроматографии широко применяют для разделения и анализа сложных смесей углеводородных газов нормального строения, и их изомеров, а также для разделения других близких по своим свойствам веществ. [c.60]

    Применение современных физико-химических методов разделения, анализа и контроля позволяет провести объективную оценку состава, а следовательно, и качества исходного нефтехимического, природного сырья и полупродуктов для ПАВ. Наблюдаемое в последнее время интенсивное развитие методов жидкостной адсорбционной и ионообменной хроматографии, тонкослойной и газо-жидкостной хроматографии, гелевой хроматографии, методов инфракрасной спектроскопии и масс-спектрометрии, ядерного магнитного резонанса, двухфазного и других видов титрования и т. д. открывает перед исследователями и производственниками широкие возможности. Однако возрастают трудности в выборе подходящего метода или комплекса методов, обеспечивающих наиболее рациоцальное ретаение поставленной задачи. В большой степени выбор соответствующих методов и их аппаратурного оформления определяется составом анализируемых веществ, пределами измеряемых концентраций и необходимой точностью анализа. Учитывая вышеизложенное, в перечень рекомендуемых для практического использования в производстве сырья и полупродуктов для ПАВ методов разделения, анализа и контроля включены и однотипные методы в вариантах, необходимых для применения к различным по составу анализируемым веществам. Многогранность и сложность решаемых научных и технических задач, связанных с анализом и контролем, обусловливают также необходимость рассмотрения принципиально различных методов применительно к однотипным анализируемым веществам. [c.15]

    В нашей лаборатории разработаны (С. П. Миролюбова, К. В. Шмелева) методы газо-жидкостной хроматографии физиологически активных веществ на отечественном хроматографе ХЛ-4 (ингаляционных наркотиков, например, фторотапа, хлороформа, эфира, трихлорэтилена и др.). Это позволяет проводить анализ ингаляционных наркотиков и анестетиков во вдыхаемой смеси газов и паров, а также в крови. При анализе фармакопейных ингаляционных наркотиков — закиси азота, эфира, хлороформа, фторотана удается обнаруживать в них малые примеси вредных веществ. Нами были изучены свойства различных стационарных фаз при [c.11]

    Для типичных задач анализа сложных смесей газов и иаров в интервале интересующих иромышленность концентраций наиболее пригодна газо-жидкостная хроматография с использованием детекторов типа катарометра. При анализе низкокипящих газов целесообразно применять газо-адсорбционную хроматографию с использованием в качестве сорбентов гелей, молекулярных сит, углей II модифицированных сорбентов. Для анализа весьма малых концентраций, а также для анализа высококипящих веществ лучше всего применять капиллярную хроматографию с иопизацнонным детектором. Для обнаружения примесей целесообразно прибегать к термическим методам или газо-жидкостной хроматографип с использованием высокочувствительных детекторов. В экспрессных анализах возможно применение капиллярной хроматографии, а также хроматермографии. Для апа.ппза веществ, сильно различающихся но своим физическим свойствам, пригодны хроматермография и капиллярная хроматография. Наконец, для непрерывного анализа малых примесей в потоке необходимо применять тенлодинамический метод, а для смесей, содержащих высокие концептрации компонентов,— хроматермографию. [c.371]

    Простота и мпогостороиность газо-жидкостной хроматографии обусловили быстрое ее развитие, и именно этот метод нашел широкое применение во многих аналитических лабораториях. Однако этот вариант имеет свои ограничения. Так как компоненты разделяемой смеси переносятся через газовую фазу, область применения газовой хроматографии ограничена соединениями, относительно летучими при температуре разделения. Если компоненты недостаточно летучи, время разделения становится несоразмерно большим, а концентрации компонентов в элюирующем газе-носителе слишком низкими для детектирования. С целью понижения необходимого предела летучести можно уменьшать количество стационарной фазы до минимума, необходимого для разделения, и использовать очень чувствительный детектор. Хотя эти приемы имеют также ограниченное значение, колонки с малым количеством фазы, капиллярные колонки и очень чувствительные детекторы действительно расширили область применимости хроматографии для анализа более тяжелых соединений. [c.65]

    В некоторых областях применения газоадсорбционная хроматография имеет большие преимущества перед газо-жидкостной хроматографией. Зто относится не только к успешно практикуемому уже в течение десятилетий разделению газов и паров низкокипящих соединений, но также к разделению дейтериро-ванных и недейтерированных веществ и изомеров. Особенно надо подчеркнуть возможность сочетания преимуществ газоадсорбционной и газо-жидкостной хроматографии, достигаемого путем модифицирования и импрегнирования поверхности адсорбентов. Это позволяет при той же степени разделения использовать более короткие колонки при меньших временах анализа (см, например, [11]). Однако здесь мы не рассматриваем модифицированные адсорбенты ввиду плохой воспроизводимости данных при использовании таких фаз. Тем не менее модифицирование позволяет в ряде случаев получить результаты, сравнимые с достигаемыми при газо-жидкостной хроматографии. При этом решающую роль играет химическая и геометрическая однородность поверхности. Поскольку для применявшихся ранее адсорбентов этого большей частью не удавалось добиться, укажем лишь несколько улучшенных адсорбентов. [c.210]

    Уитон и Бауман [1а] нашли, что фронтальная выходная кривая в методе исключения иона является интегральной выходной кривой вымывания, потому что они отождествляли фронтальную ступеньку с пиком выходной кривой вымывания. В газо-жидкостной хроматографии также наблюдалась интегральная зависимость [35—37]. [c.257]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Газо-жидкостная хроматография также является распространенным и эффективным методом определения остаточных количеств пестицидов в воде (47, 79). Непрерывное усовершенствование аппаратуры и приемов подготовки проб для анализа позволяет проводить газо-хроматографическое определение пестицидов с большой чувствительностью и точностью. Широкое применение для определения галогенсодержащих соединений получил электронно-захватный детектор [80, 81]. При работе с этим детектором предъявляются повышенные требования к способам очпстки экстрактов, к чистоте используемых химических реактивов, посуды [82, 83]. Было отмечено, что посторонние пики реже появляются на хроматограммах при извлечении пестицидов из водных проб прямым экстракционным способом [84] по сравнению с угольноадсорбционным способом извлечения [85—88]. [c.227]

    Газо-жидкостная хроматография. Этот вид хроматографии был открыт сравнительно недавно (1952), но за последнее время уже получил довольно широкое распространение в биологии, химии, а также во многих важных отраслях народного хозяйства. В газо-жидкостной хроматографии происходит распределение компонентов исследуемой смеси между газообразной и жидкой фазами, из которых последняя является неподвижной. Отношение концентрации анализируемого вещества в жидкой неподвижной фазе к его концентрации в газовой фазе играет первостепенную роль в разделении смеси веществ. Это отношение носит название коэффициента распре- Црооа. деления. I [c.355]

    В работе [222] приводятся результаты по применению крупнопористых силикагелей для разделения высококипящих жидкостей и твердых парафинов. Было получено хорошее разделение нормальных углеводородов, содержащихся в парафине (рис. 151). В той же работе показана возможность газохроматографического разделения па макропористом силикагеле смеси фталатов (диметилфталат, дибутилфталат, диоктилфталат и динопилфталат), которые часто используются в качестве неподвижных разделяющих жидкостей в газо-жидкостной хроматографии (рис. 151, б). Из зависимости логарифма исправленных времен удерживания от обратной температуры были определены теплоты адсорбции этих фталатов па макропористом силикагеле. На этом же адсорбенте получены хроматограммы силиконовых масел № 5 и ВКЖ-94 (рис. 151, в, г), часто используемых в качестве разделяющих жидких фаз в газо-жидкостной хроматографии и имеющих, кроме этого, широкое применение в качестве модификаторов силикатных и стеклянных материалов и наполнителей, а также в качестве связующих при приготовлении лаков. В этой работе приводятся также результаты разделения метиловых эфиров пальмитиновой и стеариновой кислот (рис. 151, д). Эти результаты получены на крупнопористых силикагелях с удельной поверхностью 7 и 20 м 1г и со средними размерами пор соответственно около 4000 и 2500 А. [c.199]

    Распределение последовательностей мономерных звеи мерах эггаленоксида (ЭО К = И ) и МА (К = Н) исследовалось в работах-Шефера с сотр. [60, 61] с помощью ЯМР-спектроскопии Н и С в сочетании с газо-жидкостной хроматографией (ГЖХ) гликолевых эфиров (до т = 13), полученных гидролизом цепи полиэфира. В спектре ПМР сополимера наблюдаются четыре сигнала метиленовых протонов звеньев ЭО, отвечающие различным триадным последовательностям в цепи ЭО—ЭО—ЭО (синглет при 3,61 мд.), МА-ЭО-ЭО (мультиплеты при 3,70 и 4 2 м.д.) и МА-ЭО-МА (синглет при 4,41 мд.). В спектре Я С атомы углерода звеньев ЭО также дают четыре сигнала, отвечающие тем же триадам (см. разд. 1.1.4), однако общий интервал химических сдвигов в спектрах ЯМР С примерно на порядок больше, чем в спектрах ПМР 7,5 и 0,8 мд., соответственно. По сигналу олефиновых протонов звеньев МА, расщепленному на три пика, можно различить три типа пентадных последовательностей ЭО-ЭО-МА-ЭО-ЭО (630 мд.), МА-ЭО-МА-ЭО-ЭО (631 мд.) и МА—ЭО—МА—ЭО—МА (632 мд.). Аналогичное расщепление на четыре пика, отвечающие тем же пентадам, наблюдается для сигнала карбонильных атомов углерода звеньев МА (см. разд. 1.1.4). Общий интервал химических сдвигов в спектрах ЯМР С и в этом случае более чем на порядок превьпиает интервал сдвигов в спектрах ПМР 03 и 0,02 мд. соответственно. Относительные концентрации разных триад (и пентад), определенные по спектрам ЯМР Н и С, хорошо совпадают друг с другом, а также с данными ГЖХ (табл. 3.4). Найденное распределение последовательностей мономерных звеньев не описывается статистикой Маркова, и для объяснения экспериментальных данных предложена модель сополимеризации, при которой катализатор может координировать несколько молекул мономера перед их присоединением к цепи. [c.109]

    Наряду с широко разработанными методами определения тетраэтилсвинца, анализ других свинцовоорганических соединений разработан относительно мало. Имеются отдельные работы по газо-жидкостной хроматографии [77, 78], бумажной хроматографии [79, 80], по спектрофотометрическому методу [81, 82]. Проведен масс-спектрометрический анализ тетраметил- и тетраэтилсвинца [83], изотопный анализ тетраметилсвинца [84], определение свинца в органических материалах методами колориметрии [85], а также амперокулонометрический метод анализа тетраметил- и тетраэтилсвинца [86]. [c.633]

    Было установлено, что метод газо-жидкостной хроматографии также не дает возможности анализировать сырой ОЦБ, так как компоненты, содержащиеся в незначительных количествах, а также наиболее тяжелые компоненты (ТХГП, МЭТХГП и др.) не могут быть обнаружены. [c.124]

    Физические свойства сесквитерпеновых углеводородов идеально соответствуют требуемым для разделения и выделения методом ГЖХ. Впрочем, анализ сложных смесей терпенов не лишен и трудностей, связанных с вышеупомянутой возможно стью их разложения, а также с тем, что на большинстве колонок диапазоны времени удерживания сесквитерпенов и кислородсодержащих монотерпенов перекрываются [38, 39, 82] Успешное разделение ациклических, моноциклических, бициклических и трициклических сесквитерпеновых углеводородов было осуществлено на весьма разнообразных полярных и неполярных жидких фазах [170 —174], и на основании полученных результатов была составлена [175] обширная таблица характеристик удерживания этих соединений (табл. 5.2). Сравнительно меньше внимания исследователи уделяют газо-жидкостной хроматографии кислородсодержащих сесквитерпенов [39], хотя этот метод и оказался вполне пригодным для разделения, например, сесквитерпенов, принадлежащих к группе элемола и эвдесмола [39], трикотекановых митотоксинов и их триметилсилильных производных [176], фураносесквитерпенов [177— 180], а также соединений, относящихся к некоторым другим структурным типам [181, 182]. На колонках с полиэфирной неподвижной фазой и с силиконовым маслом были разделены разнообразные геометрические изомеры фарнезола [183] и ювенильного гормона [184]. ГЖХ (в сочетании с использованием пламенно-ионизационного детектора или детектора по захвату электронов) лежит в основе различных методов определения абсцизовой кислоты [185—188]. [c.241]

    В феноле примеси определяли методом газо-жидкостной хроматографии в кубовом остатке содержание фенола, и-изопропил- и л-изо-проненилфенола также определяли методом газо-жидкостной хроматографии, а остальные компоненты — тонкослойной хроматографией . В феноле были обнаружены окись мезитила (0,02%) и форон (0,01%). В кубовом остатке были обнаружены восемь компонентов установленного строения (дифенилолпропан, фенол, соединение Дианина, орто-пара- и орто-орто-изомеры дифенилолпропана, 2,4,4-три-метил-2 -оксифлаван, л-изопропил- и л-изопропенилфенол) и четыре неидентифицированных вещества. Сумма определенных компонентов составляла примерно 75%. Остальная часть, по-видимому, представляет собой трехъядерные (трис-фенолы I и II) и многоядерные фенолы, которые не разделяются при хроматографировании. [c.75]

    Был предложен метод высокочастотного титрования, но он также не обеспечивает достаточной точности определения малых количеств фенола . Наиболее подходящим для определения микропримесей фенола представляется метод газо-жидкостной хроматографии, описанный выше. [c.195]

    В настоящее время существует множество хроматофафиче-ских приборов, используемых для конфоля и автоматизации производственных процессов, а также для научных целей. Это газовые (подвижная фаза - газ), жидкостные и газожидкостные хроматографы все они обычно колоночного типа. [c.293]


Смотреть страницы где упоминается термин Газо-жидкостная хроматография также Хроматография: [c.12]    [c.517]    [c.517]    [c.189]    [c.12]    [c.7]    [c.133]    [c.40]    [c.52]    [c.116]    [c.117]    [c.452]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]

Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ГазЬ-жидкостная хроматография

Газо-жидкостная хроматографи

Жидкостная хроматография хроматографы

Хроматография газо-жидкостная

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте