Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрогенизация окислительная

    В качестве примера можно привести обратимую дегидрогенизацию этилового спирта в ацетальдегид ферментом алкогольдегидрогеназой (Веннесланд и Весткеймер, 1954). Коферментом этого белка является НАД, который содержит никотинамидную группировку, осуществляющую обратимую окислительно-восстановительную функцию фермента положительный заряд на атоме азота кольца уравновешивается отрицательным зарядом одной из двух фосфатных групп. Когда фермент реагирует с дейтерированным этиловым спиртом СНзСОгОН, атом дей- [c.726]


    Ацетилкоэнзим А присоединяется к карбонильной группе щавелевоуксусной кислоты, давая производное лимонной кислоты, которое гидролизуется до лимонной кислоты с регенерацией КоА. Следующие стадии в основном обратимы, и каждая из них катализируется ферментом. Лимонная кислота дегидратируется до ненасыщенной с-аконито-вой кислоты, которая присоединяет воду иным образом, превращаясь в изолимонную кислоту. После дегидрогенизации получается щавелевоянтарная кислота, которая, будучи р-кетокислотой, легко теряет двуокись углерода, образуя а-кетоглутаровую кислоту. Окислительное декарбоксилирование приводит к образованию янтарной кислоты, и цикл завершается дегидрогенизацией в фумаровую кислоту, присоединением воды (яблочная кислота) и дегидрогенизацией в щавелевоуксусную кислоту. [c.729]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    Нафтено-ароматические углеводороды активно реагируют с кислородом, Например, тетралин при неглубоком окислении образует в основном гидроперекись, которая, распадаясь, переходит в тетралон, а затем из последнего образуются соединения окислительной полимеризации — смолы. Те же углеводороды при более жестких условиях окисления образуют значительное количество кислых продуктов, очевидно, вследствие распада циклической структуры полиметиленовой части молекулы, причем окисление сопровождается частично дегидрогенизацией. [c.267]


    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    Следовательно, окисление высокомолекулярных углеводородов гибридного строения идет в основном в двух направлениях во-первых, в направлении окислительного крекинга, сопровождающегося отщеплением и окислением парафино-циклопарафиновых заместителей в ароматических ядрах, и, во-вторых, в направлении дегидрогенизации гексаметиленовых колец до ароматических [c.133]

    По своему химическому существу и по характеру влияния на технические свойства конечных продуктов реакция образования кислородных мостиков между молекулами смолы во время окисления битумов напоминает процесс вулканизации каучука серой. И в том и в другом случае идет образование трехмерных структур, в результате чего продукт становится более твердым, менее растворимым, менее мягким и химически более стойким. В зависимости от глубины этого процесса можно получить технические битумы со свойствами, варьирующими в весьма широких пределах — от полужидких текучих продуктов до твердых хрупких асфальтенов. Сравнительно небольшое количество кислорода остается связанным в окисленном битуме, большая же часть его идет на образование летучих продуктов окисления (вода, окись и двуокись углерода, органические кислородсодержащие соединения). Характер распределения кислорода в продуктах окисления гудрона и крекинг-остатка (при 275° С) на разных стадиях процесса приведен на рис. 20. Окислительная дегидрогенизация сырья, сопровождающаяся образованием воды, является основной реакцией, потребляющей в случае окисления гудрона 90% в начальной стадии и 69% в конечной общего расхода кислорода. Доля других кислородсодержащих соединений в потреблении кислорода значительно возрастает к концу процесса (31% для гудрона и 42% для крекинг-остатка), когда интенсивность окислительной дегидрогенизации постепенно ослабляется [46]. [c.135]

    Характерной особенностью процесса является отсутствие поверхностного нагрева сырья в зоне реакции протекающие при этом процессе окислительные экзотермические реакции обеспечивают необходимый тепловой эффект. При высокой температуре в реакторе под действием кислорода происходит сложный термохимический процесс преобразования углеводородов, главным образом дегидрогенизации, с образованием ароматических и непредельных соединений. Сырьем могут служить керосиновый, соляровый, газойлевый и другие дестиллаты. [c.139]

    Второй путь метаболизма алканов — окисление при р-углеродном атоме алкановой цепи. В этом случае первоначально образуются спирты или кетоны. Дальнейшее расщепление кетона ведет к образованию первичного спирта, длина цепи которого на два атома углерода короче, чем у исходного субстрата. Первичный спирт затем подвергается окислительной дегидрогенизации с последующим р-окислением образовавшейся жирной кислоты. [c.168]

    Комплексные оксихлориды, содержащие висмут, щелочные и щелочно-земельные металлы, хлор и кислород, были синтезированы, структурно охарактеризованы, испытаны в качестве катализаторов окислительной дегидрогенизации этана с образо- [c.284]

    При каталитическом крекинге тяжелое сырье, обычно прямогонный газойль с интервалом кипения 316—566°С, содержащий ароматические, нафтеновые и парафиновые углеводороды, при 427—527 °С и давлении, близком к атмосферному, пропускают через кислотный катализатор, находящийся в кипящем слое, что позволяет выводить катализатор для окислительной регенерации. Процесс дает возможность получать бензин, котельное топливо и некоторые дизельные и турбинные топлива из тяжелого сырья с минимальным образованием легких газов и оптимальным выходом углерода. Тепло, образующееся при сгорании углерода в процессе окислительной регенерации катализатора, используют для того, чтобы возместить затраты тепла в эндотермическом процессе на стадии крекинга. В дополнение к крекингу используют также процессы изомеризации, алкилирования и дегидрогенизации. [c.169]

    ДЕГИДРОГЕНИЗАЦИЯ (дегидрирование), отщепление водорода от молекулы орг. соединения. Обычно приводит к образованию двойной связи (С=С, С=0 и др.). Протекает в присут. тех же катализаторов, что и гидрогенизация, но при более высоких т-рах (300—550 °С) н более низких давл. (ог < 0,1 до 5 МПа). В пром-сти Д. этана получают этилен, Д. этилбензола — стирол, м-бутана (или м-бутенов)— бутадиен-1,3, изопропанола — ацетон и др. Д.— важная стадия многих нефтехим. процессов, напр, термич. крекинга, каталитич. риформинга. См. также Окислительная дегидрогенизация. [c.148]


    Орлов Повторил некоторые опыты Ипатьева и Сабатье [78]. Кроме того, он испытал новые катализаторы — медь, осажденную на шамоте и коксе, окислы ванадия и тория на асбесте, сернокислый церий, медную сетку. Орлов отдельно исследовал реакции дегидрогенизации и реакции окисления опирта и нашел, что наиболее, выгодным в физико-химическом отношении является процесс, происходящий на медной сетке в присутствии кислорода. Он показал, что окислительные реакции способствуют повышению температуры катализатора будет ли процесс проходить по ступенчатому механизму разложения и затем окисления  [c.62]

    В химическом отношении гидрогенизация весьма сложный процесс, в котором одновременно протекает большое количество реакций, связанных с разрывом связей С-С, С-Н, С-8, с изменением скелета расщепляющихся молекул и т. п. Присоединение водорода к элементам или соединениям - гидрогенизация и отщепление водорода от соединения - дегидрогенизация, протекающие под влиянием катализаторов, являются восстановительно-окислительными процессами, которые определяются температурными условиями и давлением водорода. Так, например, на одном и том же катализаторе гидрогенизация идет при низких температурах и повышенных давлениях, тогда [c.61]

    И, наконец, объясняя свои главные реакции — дегидрогенизацию спиртов посредством окисления — восстановления катализатора, Ипатьев разработал важные принципы восстановительного и окислительного катализа как обратимого явления со всеми следствиями, вытекающими отсюда, в том числе идентичностью катализаторов для реакций гидро- и дегидрогенизации, окисления и восстановления и т. д. 4, стр. 570—579]. [c.129]

    Тенденции к установлению связей в исследованиях двойственной реакционной способности органических, и неорганических веществ стали появляться с 20-х годов в связи с созданием новых теорий кислот и оснований (главным образом с работ Бренстеда). Эти тенденции усилились с развитием теории окислительно-восстановительных процессов и гидро-дегидрогенизации органических соединений. [c.379]

    ОКИСЛИТЕЛЬНАЯ ДЕГИДРОГЕНИЗАЦИЯ (окислительное дегидрирование), отщепление водорода от молекулы орг. соединения в присут. окислителя (Ог, СЬ, ССЬВг, [c.397]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Если реакция (2) протекает быстро, то скорость окислительного аммонолиза, как и наблюдалось на опыте, равна скорости образования акролеина. Пока еще не установлено, является реакция (2) гомогенной или гетерогенной. Ее можно представить как образование имина СН2=СН— H=NH с последующей окислительной дегидрогенизацией, но эти соединения весьма неустойчивы и легко полимеризуются. Известно, однако, что на катализаторе М0О3 в присутствии аммиака протекает превращение акролеина в нитрил. [c.161]

    Каталитические реакции, осуществляемые в нефтеперерабатывающей промышленности, относятся как к окислительно-воостано-вительным (гидрогенизация и дегидрогенизация), так и к кислотным (каталитический крекинг, алкилирование изобутана бутенами, полимеризация олефинов). Широко применяется бифункциональный катализ (изомеризация парафиновых углеводородов, рифор-минг, гидрокрекинг). Катализ основаниями в нефтеперерабатывающей промышленности не применяется. [c.135]

    В случае каталитической дегидрогенизации бутена в токе водяного пара (разд. II,А, гл,6), к 1 да процесс протекает в нормальных условиях или при несколько пониженных темге а-турах, кислород можно вводить и вызывать дополнительное окислительное дегидрирование. [c.313]

    Один из рекомендуемых режимов [9-120] — нагрев от 200 до 300 С со скоростью 0,5 /мин и окисление в сухом воздухе при 300 С в течение 1 ч. Зависимости отношения Н/С от О/С (диаграммы ван-Кревелена) показывают, что все точки в интервале 200-300 С в основном укладываются в прямую линию (рис. 9-63). Это свидетельствует об идентичности реакций в указанном интервале температур. При 400 С содержание кислорода в пеке прибавляется быстрее, чем удаляется водород. Окислительная дегидрогенизация в начальной стадии окисления приводит к образованию в основном карбонильных групп, инициирующих сшивание молекул пека. Длительное время окисления значительно удорожает процесс. Экстракция мезофазного волокна в бензоле по аналогии с технологией прядения в тетрагидрофуране некоторых синтетических волокон способствует ускорению окончания окислительных процессов [9-112]. Экстракция не обязательно должна проходить по всему сечению волокна. Уже после растворения поверхностных слоев размягчения волокна можно избежать или предотвратить его при значительно сокращенном времени окисления. В некоторых случаях экстракция может вы- [c.611]

    Основные процессы контактного катализа можно разделить на два больших класса электронные (радикальные) и ионные (кислотно-основные)-. К первому классу относятся процессы, связанные с переходом электронов между катализаторами и реагирующими веществами (окислительно-восстановительные реакции) окисление, восстановление, разложение, гидрогенизация, дегидрогенизация, циклизация и ароматизация углеводородов и др. Типичными катализаторами для них являются металлы и полупроводники, т. е. вещества, обладающие свободными или легковозбуждаемыми электронами (или дырками). [c.471]

    Окисление высокомолекулярных углеводородов идет в двух направлениях а) окислительный крекинг, сопровождающийся от-цеплением и окислением парафино-нафтеновых заместителей в ароматических ядрах и б) дегидрогенизация кислородом нафтеновых и ароматических колец с образованием конденсированных систем, которые служат основным источником образования смол и асфальтенов. [c.31]

    Наиболее распространенный в промышленности контактный способ производства серной кислоты был осуществлен в начале текущего столетия. В годы первой мировой войны появились заводы синтеза аммиака. В настоящее время в крупных масштабах реализованы многие непрерывные каталитические процессы, в частности окисление этилена в окись этилена, окисление нафталина (ортоксилола) во фталевый ангидрид. Стирол производят каталитической дегидрогенизацией этилбензола, бутадиен — дегидрированием бутана или бутилена, акрилонитрил — окислительным аммонолизом метана. В нефтеперерабатывающей промышленности в очень крупных масштабах осуществляют каталитические процессы гидрообессерива-ния, крекинга, гидрокрекинга и риформинга. [c.10]

    Процессы дегидрогенизации в условиях окислительного крекинга сопровождаются значительным деметилированием. Поэтому при нарофазно-окцслительном крекинге метипциклогексана основным продуктом реакции является бензол, а выход толуола составляет всего 2,5—3,5% [c.173]

    Мономер, предназначенный для получения полифениленовых эфиров, должен отвечать следующим требованиям. При получении в основном линейных продуктов заместители в фенольном ядре должны располагаться в положениях 2 и 6. Атомы галогенов не замедляют процесса, однако в ходе полиреакции они могут отщепляться и вызывать разветвление. Фенол должен легко окисляться заместители, понижающие его окислительный потенциал, замедляют или ингибируют реакцию дегидрогенизации. [c.223]

    При анодном окислении изомерных ксилолов обнаружено много продуктов различного направления окислительного воздействия. При работе с свинцовым (с осадком РЬОа) анодом и оловянным катодом с диафрагмой и без нее в среде разведенной серной кислоты, в продуктах реакции преобладают образованные окислением метильной группы соответственного ксилола толуиловый альдегид (I) и изомерная фталевая кислота (II), наблюдаются также хиноны, образованные через посредствующую стадию фенола (кси-ленола) (III), с отщеплением метильной группы (IV) или с ее сохранением, но перегруппировкой в последнем случае промежуточно образуется диметилхинол (VI), перегруппировывающийся в диме-тилгидрохинон (VII), Окислительной конденсацией ксиленола (дегидрогенизацией) получается и дифенол (диксиленол) (V). [c.361]

    Эти цифры показывают, что полное сгорание перерабатываемого сырья до двуокиси углерода (или окиси углерода) наблюдается лишь в незначительной степени. Образование органических кислородных соединений, кислот, альдегидов и др. также имеет второстепенное значение. В генераторе идут, главным образом, реакции дегидрогенизации и разложения, в результате чего образуются ненасыщенные углеводороды, а также ароматика и нафтены низкого молекулярного веса. Крекинг-бензин окислительного крекинга похож на бензин парофазного крекинга, но имеет более высокое содержание олефинов и ароматики. [c.163]

    Допущение о постоянстве эффективного коэффициента диффузии газов оправдывается для кнудсеновского режима или, при молекулярной диффузии, для зквимолярной встречной диффузии в бинарных смесях, или, наконец, при большом избытке одного из компонентов смеси. Последний может являться одним из реагентов, как, например, водород в реакциях гидрогенизации, или может не принимать непосредственного участия во взаимодействии. Примерами таких компонентов является водяной нар в реакции дегидрогенизации и инертный газ при окислительной регенерации закоксованных катализаторов. С помощью уравнений (1.15) или (1.34) можно установить, является ли избыток рассматриваемого компонента достаточно большим для того, чтобы можно было считать /)эф постоянным. [c.175]

    Идейно близка к данному разделу мультиплетной теории, хотя и носит качественный характер, недавняя работа Жуй и Баласеаню [389] по окислительной дегидрогенизации. Критерием при выборе катализатора эти авторы считают активность твердого тела по отношению ко всем связям, участвующим в данной реакции, налример N—Н, N—Н и Н— Н при синтезе ЫНз [390]. Выбрав катализаторы, активирующие как связи О— О и Н—Н (окисление), так и связи С—Н и Н—Н (дегидрогенизация), авторам удалось дегидрировать циклогексан и ароматизировать гептен-2 и гептан в присутствии кислорода при температурах более низких, чем в его отсутствие. Такими катализаторами оказались 1) платина, 2) палладий и 3) окись хрома (все три катализатора — на окиси алюминия), а также 4) кальций-никель фосфат. [c.209]


Смотреть страницы где упоминается термин Дегидрогенизация окислительная: [c.320]    [c.14]    [c.155]    [c.284]    [c.148]    [c.135]    [c.584]    [c.208]    [c.153]    [c.285]    [c.407]    [c.36]    [c.43]    [c.166]    [c.210]    [c.348]   
Химический энциклопедический словарь (1983) -- [ c.397 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.397 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация



© 2025 chem21.info Реклама на сайте