Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, открытие

    Выдающегося шведского ученого Йенса Якоба Берцелиуса справедливо называли некоронованным королем химиков первой половины XIX столетия. Человек энциклопедических знаний и превосходный аналитик, Берцелиус работал очень плодотворно и почти никогда не ошибался. Авторитет его был так высок, что большинство химиков его времени, прежде чем обнародовать результат какой-либо важной работы, посылали сообщение о ней в Стокгольм, к Берцелиусу. В его лаборатории были определены атомные веса большинства известных тогда элементов (около 50), выделены в свободном состоянии церий и кальций, стронций и барий, кремний и цирконий, открыты селен и торий. Но именно при открытии тория непогрешимый Берцелиус совершил две ошибки. [c.333]


    Последующие десятилетия были не столь богаты открытиями, но тем не менее число элементов продолжало расти. Так, Берцелиус открыл еще четыре элемента селен, кремний, цирконий и торий (рис. 12). Луи Никола Воклен в 1797 г. открыл бериллий. [c.92]

    Магнезитовая футеровка обладает тем достоинством, что восстановленный из нее магний быстро улетучивается и не изменяет химического состава плавки. При использовании футеровки из диоксида циркония последний восстанавливается и попадает в металл. Плавильные тигли, изготовленные из графита, являются хорошими раскислителями расплавленной катодной меди как в вакууме, так и в печах открытого типа и способствуют получению сплава, относительно свободного от окисных плён. [c.88]

    Интересно отметить, что именно на основании квантовой теории Бор сделал вывод о существовании только 14 элементов-лантаноидов и предсказал, что элемент № 72, который искали среди лантаноидов, находится за пределами этой группы и является аналогом циркония. Это ускорило открытие гафния — элемента № 72. [c.63]

    Как известно, Менделеев на основании своего закона, предсказал свойства ряда еще не открытых в его время элементов. Квантовая теория не только объясняет метод Менделеева, но позволяет более точно предсказать свойства элементов. Так, элемент с порядковым номером 72 не был известен до 1923 г. Предполагалось, что он должен быть редкоземельным. Однако Бор на основании квантовой теории показал, что группа редкоземельных элементов должна заканчиваться элементом с порядковым номером 71, лютецием, так как у лютеция полностью заполняется 4/-подуровень. Бор показал, что неизвестный элемент с порядковым номером 72 должен иметь электронную конфигурацию, сходную с электронной конфигурацией циркония 2г. [c.62]

    Следует отметить, что гафний — первый элемент, открытый в результате изучения электронной структуры атома как аналог циркония. [c.78]

    Разработка этого метода получения и предопределила возможность технического применения этих металлов в технике, так как загрязненные металлы (примеси О, N, Н) обладают очень низкими механическими свойствами. Поэтому титан, открытый впервые Клапротом в 1827 г. и полученный Муассаном в свободном состоянии в 1895 г., нашел широкое применение лишь спустя более 100 лет. Гафний получается в малых количествах при добыче циркония, так как сопутствует ему в его природных соединениях. [c.326]

    Правильность учения о строении атома всегда проверялась периодическим законом. Вот еще один пример. В 1921 г. Нильс Бор показал, что элемент с 2=72, существование которого предсказано Д. М. Менделеевым в 1870 г., должен иметь строение атома, аналогичное цирконию (2г — 2.8.18.10.2 и НС — 2.8.18.32.10.2), а потому искать его следует среди минералов циркония. Следуя этому совету, в 1922 г. венгерский химик Хевеши и голландский физик Костер в норвежской циркониевой руде открыли элемент с дав ему название гафний (от латинского названия г. Копенгагена — места открытия эле.меита). Это был величайший триумф теории строения атома на [c.71]


    Осадок отделяют на центрифуге и раствор испытывают на полноту отделения РО -ионов. Раствор, свободный от Р0< -ионов, используют для открытия катионов I, П и 1П аналитических групп. В растворе остаются небольшие количества ионов циркония (IV), которые в слу чае необходимости отделяют. [c.464]

    Открытие лития, бериллия, циркония и германия [c.468]

    Реактив используют для открытия и гравиметрического определения кобальта. Он образует с ионами кобальта, железа (III), меди, циркония и другими ионами малорастворимые соединения. При взаимодействии с солями кобальта(И) образуется интенсив- [c.204]

    М. Открытие К. Циглером и со-КАТАЛитические трудниками (Институт Макса СИСТЕМЫ Планка, ФРГ) нового класса НА ОСНОВЕ каталитических систем полиме-ЧЕТЫРЕХХЛОРИСТОГО ризации этилена при низком ТИТАНА давлении — комплексных металлорганических катализаторов И, 12]—положило начало многочисленным исследованиям в этом направлении во многих странах мира. Первыми каталитическими системами, которые нашли применение в производстве ПЭНД, были системы на основе солей титана и алкилов или галоген-алкилов алюминия. Соединения титана могли быть заменены соединениями других металлов переменной валентности ванадия, циркония, гафния, молибдена и др. Однако низкая стоимость и доступность соединений титана, достаточно высокая активность катализаторов на его основе при полимеризации этилена, возможность получения широкого ассортимента марок ПЭ [c.14]

    Способность многих нерастворимых окислов в форме водных суспензий сорбировать катионы или анионы часто усложняет проведение операций аналитического разделения, так как удалить ионы примесей очень сложно. Это явление неоднократно объяснялось различными причинами, однако его исследование как одной из областей химии ионного об-мена началось лишь после открытия, сделанного в 1943 г. [1]. Исследователи обнаружили, что нерас/ творимое соединение фосфат циркония можно применить для отделения урана и плутония от продуктов деления. С тех пор ионообменниками этого типа начали интересоваться в ряде стран причиной тому была их высокая устойчивость к действию ионизирующей радиации, высоких температур и большинства химических реагентов. Особое внимание к ним было проявлено в тех странах, в которых планировалось использование ядерной энергии, что связано с химической переработкой ядерного топлива, материалов, используемых в качестве замедлителей, и охлаждающей воды в реакторах, работающих при высоких температурах и давлениях. [c.113]

    Вся первая половина XIX в. отмечена открытием большого числа новых элементов. Английский химик Г. Дэви в начале века впервые применил электролиз растворов и расплавов солей для получения новых элементов. Так ему удалось получить и описать калий, натрий, магний, стронций, барий, кальций, газообразный хлор. В те же годы Берцелиус открыл церий, селен, кремний, цирконий, торий, а другие химики — бериллий, бор, палладий, радий, осмий, иридий, ниобий, тантал, йод и бром. К 1830 г. было выделено уже 55 элементов. Требовалась их систематизация с целью классификации по свойствам, сужения направления поиска новых элементов и предсказания свойств пока не открытых элементов. [c.13]

    Сторонники теории флогистона, а среди них был и Пристли, пытались доказать несостоятельность взглядов Лавуазье (взглядов, которых придерживаются и сегодня), но большинство химиков восприняли их с энтузиазмом. Среди сторонников Лавуазье был и шведский химик Бергман. В Германии одним из первых приверженцев Лавуазье стал Мартин Генрих Клапрот (1743—1817). Среди немецких ученых считалось очень патриотичным придерживаться теории флогистона, поскольку автор теории Шталь был немцем. Поэтому выступление Клапрота в поддерм<ку теории Лавуазье произвело сильное впечатление. Позднее Клапрот внес свой вклад в открытие элементов в 1789 г. он открыл уран и цирконий. [c.52]

    Работы Г. Мозли (1887—1915) показали, что действительной основой периодического закона являются не атомные массы, а положительные заряды ядер атомов, численно равные порядковому номеру элемента в периодической системе. На основании периодического закона и работ Г. Мозли был решен важный вопрос о числе еще неоткрытых элементов. Было установлено, например, что между водородом н гелием или между натрием и магнием новых элементов быть не может. Открытие и дальнейшее развитие периодического закона не только избавило исследователей во многих случаях от бесполезной и трудоемкой работы по поиску новых элементов, но и позволило установить число неоткрытых элементов и их порядковые номера в периодической системе. Однако знание только порядкового номера не давало еще оснований помещать элемент в определенную группу периодической системы. Этот вопрос решался с помощью электронной теории строения атома. Применение этой теории показало, например, что неоткрытый элемент № 72 должен быть аналогом циркония, а не лантаноидов. Элемент № 72 (гафний) действительно был найден в циркониевом минерале в 1923 г., а не в лантаноидах, где его много лет безуспешно искэли, ошибочно считая аналогом лантаноидов. Даже спустя 70 лет после открытия периодического закона в таблице элементов до урана пустовали четыре клетки с номерами 43, 61, 85 и 87. Эти элементы — технеций, прометий, астат и франций — были [c.14]


    ГАФНИЙ (Hafnium, от древнего названия Копенгагена) Hf — химический элемент IV группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 72, ат. м. 178,49 природный Г. состоит из шести изотопов. Положение Г. в периодической системе предсказал Д. И. Менделеев задолго до его открытия. Основываясь на выводах Н, Бора о строении атома 72-го элемента, Д. Костер и Г. Хевеши обнаружили этот элемент в минералах циркония и назвали его. Г.— рассеянный элемент, не имеет собственных минералов, в природе сопутствует цирконию (I — 7%). Г.— серебристо-белый металл, т. нл. 2222 30 С чистый Г. очень пластичен и ковок, легко поддается холодной и горячей обработке. По своим химическим свойствам очень близок к цирконию, потому их трудно разделить. В соединениях Г. четырехвалентен. Металлический Г. легко поглощает газы. На воздухе Г. покрывается тонкой пленкой оксида HfOj. При нагревании реагирует с галогенами, а при высоких температурах — с азотом и углеродом, [c.65]

    Титан и цирконий — элементы, дающие важнейшие материалы (в частности, металл) новой техники, — были открыты соответственно в XVIII и XIX вв. Титан был найден в минерале рутиле (Т102) в конце XVIII в. известным химиком Клапротом. Название титан происходит ОТ титанов — предков олимпийских богов (греческая мифология). [c.93]

    Цирконий открыт в 1789 г., титан — в 1791 г. Открытие гафния последовало лишь в 1923 г. Элемент № 104 был, по-видимому, впервые (1964 г.) синтезирован Г., Н. Флеровым и сотрудниками. В СССР для него было предложено название к у р-чатовий (Ки), в США — резерфордий (НГ). Известно несколько изотопов эяого элемента, из которых наибольшей средней продолжительностью жизни атома (около 2 мин) обладает имеющий массовое число 261. На немногих атомах было прказано, что с химической стороны курчатОвий действительно подобен гафнию. По хитану и цирконию имеются монографии .  [c.645]

    В 1921 г. Нильс Бор показал, что элемент Z = 72, существование которого предсказано Д. И. Менделеевым в 1870 г., должен. иметь строение атома, аналогичное цирконию (eoZr 2.8.18.10.2 и 72Э — 2.8. 18. 32. 10. 2), а потому искать его следует среди минералов циркония. Следуя этому, в 1922 г. венгерский химик Д. Хевеши и голландский физик Д. Костер в циркониевой руде методом рентгеноспектрального анализа открыли элемент Z = 72, назвав его гафнием (от латинского названия г. Копенгагена — места открытия элемента). Это был величайший триумф теории строения атома иа основе строения атома предсказано нахождение элемента в природе. [c.39]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Н. Бор на основании квантовомеханических расчетов показал, что последним редкоземельным элементом является элемент 71, стало ясно, что гафний — аналог циркония. Основываясь на выводах Бора, предсказавшего строение атома 72-го элемента и его основную валентность, Д. Костер и Г. Хевеши подвергли систематическому анализу рентгено-спектральным методом норвежские и гренландские цирконы. Совпадение линий рентгенограмм остатков после выщелачивания циркона кипящими растворами кислот с вычисленными по закону Г. Мозли для 72-го элемента позволило исследователям объявить об открытии элемента, который они назвали гафнием в честь города, где было сделано открытие (Hafnia — латинское название Копенгагена). Начавшийся после этого спор о приоритете между Г. Урбеном, Д. Костером и Г. Хевеши продолжался длительное время. В 1949 г. название элемента ггфний было утверждено Международной комиссией и принято всюду [10, 12, 15]. [c.214]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    На основе стекла системы СаО-РзОз -А12О3 выявлены основные закономерности получения биоактивных материалов с дифференцированной пористой структурой использованием технологии спекания. Фазовый состав спеченных материалов представлен пирофосфагами кальция, титана и циркония. Пористость спеченных материалов зависит от дисперсности исходных порошков и концентрации порообразователя. При использовании порошков стекла с размером частиц от 60 до 400 мкм и концентрации крахмала 3 мас.% получены материалы с открытой пористостью от О до 40%, средним размером пор 150-180 мкм и прочностью на изгиб от 14 до 40 МПа. [c.15]

    Многообразны аспекты техногенной миграции в океане. Из морской воды добывают М Ыа, К, С1, предполагают извлекать и др, элементы. Запасы их практически не ограничены, а технология извлечения часто проще, чем при обычной добыче Так, бурением на шельфах получают ок. 20% мировой добычи нефти. Прибрежио-морские россыпи содержат алмазы, Аи, касситерит, ильменит, рутил, циркон, монацит и др. минералы. Изучается возможность добычи на шельфах фосфоритов и глауконитовых песков Разработаны методы добычи железомарганцевых конкреций (Ре, Мп, N1, Со, Си) океанич. дна. Открытие металлоносных рассолов во впадинах Красного моря поставило вопрос об извлечении из них разл. металлов. В океан поступает огромное кол-во техногенных отходов, нарушающих его биол. режим. Для борьбы с загрязнением океанич. вод осуществляются спец. исследования, разработаны международные соглашения. [c.523]

    Гафний, являющийся постоянным спутником циркония, открыт венгерским химиком Г. Хевеши и нидерландским физиком Д. Костером значительно позже. Это связано с тем, что химические свойства циркония и гафния чрезвычайно близки, элементы было трудно разделить и установить индивидуальность гафния. Гафний получил свое название в честь города Копенгагена (по-латински Hafnia). Положение гафния в Периодической системе элементов было предсказано Д. И. Менделеевым задолго до его открытия. [c.131]

    Будущий знаменитый немецкий физик и физикохимик родился в 1864 г. в заштатном городке Бризене (ныне он называется Вомбжезно и находится на территории Торуньского воеводства в Польше). С девятнадцати до двадцати трех лет талантливый юноша сменил четыре университета, стараясь как можно полнее удовлетворить жажду знаний. Он учился сначала в Цюрихе, затем — в Берлине и Граце и, наконец, в Вюрцбурге. В 1887 г. он представил и успешно защитил диссертацию Об электродвижущих силах, вызванных магнетизмом в металлических пластинах, через которые проходит тепловой поток . После этого молодой ученый стал ассистентом одного из ведущих физикохимиков Европы Вильгельма Оствальда и работал вместе с ним в Лейпциге. Через семь лет ученый получил должность профессора в Гёттингенском университете впоследствии он возглавил Институт физической химии в Берлине. В это время он разработал теорию гальванического элемента, развил свои исследования по электрохимии и начал заниматься общими вопросами термодинамики. К 1906 г. он совершил научное открытие, которое его прославило он сформулировал третий закон термодинамики, который связан с понятием об абсолютном нуле температур. Этот ученый был не только теоретиком, но и умелым изобретателем, который создал водородный электрод , свинцовый аккумулятор и электрическую лампу со стерженьком накаливания из оксидов циркония, тория и иттрия. Кто же этот ученый  [c.275]

    Прииечгн, .е редактора. В другой своей работе Рид и У и з р о у сообщают о дальнейших своих наблюдениях над реакцией с 2r(S0i)a. Соли калия осаждаются этим реактивом количественно. Присутствие ионов натрия и аммония Не оказывает никакого влияния на открытие калия в растворе, насыщенном солью адгиония. и.м удалось откр1,ггь 0,24 калия в 1 Реакции с Zr( ui)3 мешают Mg-, Li, Rb и s. Следует применять свежеприготовленный И З -ный раствор сульфата циркония. А. К. [c.313]

    Иодат натрия выделяет из слабок-ислых растворов объемистый осадок иодата циркония, растворимого. в горячей разбавленной соляной кислоте. Эта реакция чувствительна к изменению кислотности pa TiBoipa, и так как известны другие нерас-тваримые иодаты, то она не имеет практического значения для открытия циркония, хотя она и. рекомендуется для отделения циркония от алюминия. [c.601]

    Сульфат-ион заметно понижает чувстЕительность реакции,, KjpoMe того, реакции (препятствуют фосфаты, фториды, а также органические кислоты, дающие с цирконием стабильные комплексы. Единственным металлом, который препятствует открытию циркония, является тантал. [c.602]


Смотреть страницы где упоминается термин Цирконий, открытие: [c.66]    [c.19]    [c.259]    [c.51]    [c.59]    [c.68]    [c.154]    [c.481]    [c.13]    [c.95]    [c.88]    [c.31]    [c.309]    [c.414]    [c.594]   
Курс аналитической химии. Кн.1 (1968) -- [ c.468 , c.470 ]

Курс аналитической химии Книга 1 1964 (1964) -- [ c.403 , c.405 ]

Капельный метод (1954) -- [ c.121 , c.152 ]

Курс аналитической химии Издание 3 (1969) -- [ c.468 , c.470 ]




ПОИСК





Смотрите так же термины и статьи:

Открытие ионов циркония

Открытие лития, бериллия, циркония и германия

Цирконий открытие в минералах



© 2025 chem21.info Реклама на сайте