Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические системы

    Реакция гидрирования бензола в гетерогенных каталитических системах является реакцией первого порядка по водороду и нулевого — по бензолу. Скорость гидрирования алкилбензолов при прочих равных условиях зависит от числа алкильных заместителей и практически не зависит от их размеров и структуры. Ниже приведены значения относительных скоростей гидрирования некоторых ароматических и олефиновых углеводородов при температурах 75—230 °С и 35—200 ат в присутствии катализатора (никеля на окиси алюминия)  [c.241]


    Молекулярное строение сополимеров типа СКЭП и СКЭПТ сильно зависит от типа применяемой каталитической системы и условий проведения процесса полимеризации. Типичные параметры молекулярной структуры промышленных каучуков СКЭП и СКЭПТ приведены в табл. 6. [c.62]

    При гидрогенолизе алканов (и гидрировании бензола) на Оз- и биметаллических 1г—Не-катализаторах обнаружена относительно высокая активность биметаллической каталитической системы и определенное сходство в каталитической активности 1г—Не- и Оз-катализаторов, обусловленное электронными свойствами изучаемых металлов Г29]. [c.94]

    Каталитические системы Циглера — Натта на основе алюми-нийорганических соединений и солей переходных металлов нашли, как известно, широкое применение в мировой практике для синтеза полиолефинов, а также этилен-пропиленовых и этилен-про-пилен-диеновых каучуков. Резины из указанных каучуков характеризуются высокой стойкостью к окислению, сопротивлением тепловому старению при достаточно высоком комплексе физикомеханических свойств. [c.12]

    Современные промышленные катализаторы изомеризации парафиновых углеводородов являются в основном бифункциональными и представляют каталитические системы металл - носитель. [c.41]

    Успешное развитие процессов гидрообессеривания остаточного сырья во многом определяется достижениями по синтезу активных, стабильных и прочных катализаторов. Это определило широкие исследования в области создания различного рода каталитических систем и испытания их на реальном сырье. Большое число элементов проверялось как потенциально возможные компоненты катализатора. Позднее было замечено, что могут быть созданы высокоактивные каталитические системы сочетанием двух, трех и более элементов. Начался поиск наиболее активных таких сочетаний и исследование природы этого явления, а отсюда и большое число конкретных и общих предложений. [c.94]

    Таким образом, процессы полимеризации этилена при низком давлении при переводе их на новые каталитические системы с применением более совершенного оборудования могут быть значительно безопаснее и эффективнее. [c.116]

    Общепринятая теория бифункциональной изомеризации предполагает, что под действием металлического компонента происходит дегидрирование парафинов с образованием олефинов, а олефины изомеризуются на кислотных центрах[67]. Каталитическая система металл - носитель типа алюмоплатинового катализатора благодаря своей бифункциональной природе позволяет, в зависимости от типа реакции, применять различные способы промотирования, направленные на усиление тех или иных функций этой системы. [c.42]


    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    В последнее время в качестве перспективных катализаторов изомеризации парафиновых углеводородов рассматриваются каталитические системы - фториды металлов V и VI групп периодической системы, промотированные фтороводородом. На этих катализаторах реакция изомеризации протекает при 20-50 °С [69, 70]. [c.43]

    Окисление о-ксилола. Как и нафталин, о-ксилол можно окислять во фталевый ангидрид в относительно жестких условиях (в гетерогенно-каталитической системе) м.- и п-изомеры при этом образуют соответствующие фталевые кислоты с малыми выходами и большой степенью конверсии в продукты более глубокого окисления (бензойную и малеиновую кислоты). Поэтому м- и п-изомеры окисляют в системе газ — жидкость при более низких температурах агентами окисления [НЫОз, 5, (НН4)2504 в одну или две ступени. [c.173]

    Несмотря на то что большинство этих реакций может протекать в гетерогенно-каталитических системах (газ — твердое тело или жидкость — твердое тело), они различаются порядком и скоростью (когда остальные условия аналогичны), температурой, природой катализаторов, влиянием групп, связанных кратными связями с атомами углерода, и т. д. [c.239]

    В последние годы в СССР проведены поисковые и теоретические исследования, позволившие создать новые высокоэффективные оригинальные каталитические системы стереоспецифической полимеризации бутадиена на основе л-аллильных комплексов переходных металлов. [c.12]

    Большинство реакций гидрирования проводят в гетерогенной каталитической системе. Можно осуществлять гидрирование и в гомогенной системе, но пока эти реакции не вышли из стадии эксперимента. Гомогенные реакции связаны с переносом водорода между [c.239]

    Важно отметить, что в зависимости от типа каталитической системы, механизма и условий процесса полимеризации содержание и взаимное чередование различных конфигураций звеньев варьируется в широких пределах от хаотического распределения в цепях всех возможных пространственных структур до регулярно построенных цепей, состоящих из однотипных и одинаково расположенных звеньев. [c.20]

    Получение метилового спирта. В гетерогенных каталитических системах можно эффективно гидрировать окись углерода в метиловый спирт по следующей схеме  [c.248]

    Образование углеводородов из СО и Н, при 200—400 °С и 30 — 40 ат в гетерогенных каталитических системах можно представить следующими схемами  [c.251]

    Стереорегулярность, и вообще определенная последовательность присоединения мономерных звеньев, в значительной мере фиксируются выбором каталитической системы. В то же время остальные молекулярные параметры зависят в основном от условий проведения полимеризации — температуры, давления, концентрации, степени превращения (конверсии) мономеров и др. [c.54]

    Специфические сшитые структуры образуются в условиях, когда критическая плотность разветвлений достигается в объеме, по тем или иным причинам ограниченном коллоидными размерами. Например, при эмульсионной полимеризации образуются структуры, сшитые в пределах одной латексной частицы — микрогель. Такие образования могут иметь молекулярные массы порядка 10 —10 и значительную плотность сшивки (р 10 ). Микрогель особого строения образуется в некоторых случаях при полимеризации в растворах под действием гетерогенных катализаторов. Образование такого микрогеля связано, по-видимому, с сорбцией растущих или мертвых полимерных цепей на поверхности частиц катализатора с последующим химическим связыванием цепей вследствие катионной активности каталитической системы [18, 19]. [c.26]

    Более близкий по микроструктуре к-НК по сравнению с литиевым полиизопреном каучук, выпускаемый с каталитическими системами на основе соединений титана и алюминийалкилов, характеризуется более высокими физико-механическими свойствами [c.206]

    Каталитические системы на основе соединений кобальта и алкилалюминийгалогенидов дают возможность получать полибутадиены, содержащие до 98% г ыс-1,4-звеньев. Чаще всего используют растворимые в углеводородах комплексы хлорида кобальта с этанолом или пиридином, соли органических кислот и т. д. [23, 42, 43]. [c.182]


    Никелевые каталитические системы для получения цис-1,4-полибутадиена включают две группы катализаторов на основе солей никеля и на основе л -аллильных комплексов никеля. [c.182]

    Представителем первой группы является каталитическая система, образующаяся путем взаимодействия нафтената или октоата никеля с триалкилалюминием и эфиратом трехфтористого бора [45]. Активность такого катализатора определяется в первую очередь соотношением его компонентов. Образующийся полибутадиен содержит до 98% цыс-1,4-звеньев и имеет широкое ММР. [c.182]

    Полимеризация изопрена под влиянием катализаторов Циглера-Натта. Характерной особенностью реакций полимеризации изопрена в присутствии каталитической системы R3AI + Ti U является резкая зависимость скорости процесса от состава катализатора (рис. 6). Максимальный выход полимера наблюдается при строго эквимолекулярном содержании алюминия и титана. Это соотношение оптимально и с точки зрения получения высокомолекулярного стереорегулярного полимера. При избытке Ti U превалируют процессы катионной полимеризации, приводящие к малорастворимым полимерам, содержащим циклические фрагменты. Катализаторы, полученные при отношениях Al/Ti > 1, приводят к образованию наряду с ч -1.4-полиизопренами олигомерных продуктов — циклических и линейных димеров (тримеров) изопрена. Выход [c.211]

    Процесс Полимеризации осуществляется непрерывно в батарее последовательно соединенных аппаратов вместимостью 16—20 м снабженных интенсивным перемешивающим устройством и рубашкой, через которую циркулирует хладоагент. В зависимости от применяемой каталитической системы компоненты катализатора вводят Б шихту раздельно или каталитический комплекс готовят заранее в отсутствие мономера, [c.185]

    С целью облегчения съема тепла из реакционной массы подача охлажденной шихты может проводиться не только в первый, но и в последующие по ходу процесса полимеризаторы. Этот прием в случае применения титановой каталитической системы позволяет одновременно получать полибутадиен с более широким ММР [38]. [c.185]

    Продолжительность полимеризации при 25—30°С обычно составляет 4—8 ч, конверсия бутадиена в зависимости от применяемой каталитической системы достигает 80—95%. Полимеризация при более высокой температуре 35—40°С приводит, особенно в случае титановой каталитической системы, к заметному увеличению выхода олигомеров бутадиена, придающих каучуку резкий неприятный запах. [c.185]

    Титановая каталитическая система в различных вариантах широко применяется зарубежными фирмами для получения цис- [c.192]

    Каталитические системы. Из большого числа каталитических систем, предложенных для сополимеризации этилена и пропилена, наибольший интерес, с целью получения каучукоподобных сополимеров, представляют катализаторы, образующиеся в результате взаимодействия растворимых в углеводородах соединений ванадия с алкилами [3] или галогеналкилами алюминия [4, 5]. При [c.294]

    При значительном увеличении концентрации катализатора и относительно высоком использовании мономеров эффективность катализатора снижается, так как при этом повышается роль процесса его дезактивации, а при существенном увеличении вязкости среды — и роль диффузии мономеров. Уменьшение [т]] сополимеров, по мнению ряда авторов, связано главным образом с передачей цепи через металлорганическое соединение [5, 6, 14]. С увеличением температуры сополимеризации константа реакции роста увеличивается [12]. В то же время возрастает скорость дезактивации катализатора. Поэтому изменение температуры неодинаковым -обрааом сказывается при полимеризации ня разных каталитических системах. Из рис. 2 видно, что с повышением температуры сополимеризации выход сополимера и [т]] его уменьшается состав не изменяется [11, 13]. [c.297]

    Комплексы ароматических углеводородов с каталитической системой НХ—МХд. Ранее уже отмечалось, что хлористый алюминий и хлористый водород реагируют с толуолом при низкой температуре с образованием двух комплексов СНд—GgH AlGir и СНд— eH Al2G17 следует отметить, что экспериментально показано существование этих двух веществ в растворе или в скидкой фазе. Следовательно, несомненно, что они не являются просто веществами с кристаллической решеткой, которые существуют только в твердой фазе. Предполагается, что они представляют собой о-комплексы (XXII). [c.432]

    Однако несмотря на существенное повышение качества нефтепродуктов надо отметить, в настоящее время мы уступаем лучшим мировым достижениям по качеству ряда нефтепродуктов и продукции нефтехимии, а также по таким важнейшим технико — экономическим показателям процессов, как металлоемкость, энер — гозатраты, занимаемая площадь, по уровню автоматизации произ — водства, численности персонала и др. Причем даже разработанные и внедренные в последние годы высокопроизводительные процессы и каталитические системы существенно уступают по этим показа — телям лучшим зарубежным аналогам. Неудовлетворительно обстоит дело на НПЗ и в отношении отбора светлых нефтепродуктов от потенциала, что приводит к значительному недобору дизельных фракций на атмосферных колоннах. Отечественные катализаторы значительно уступают зарубежным аналогам по активности, стабильности, селективности и другим показателям. [c.288]

    Для подбора условий, обеспечивающих наиболы ю эффективность процесса, весьма важны сведения о структуре остатков, о действующих силах межмолекулярного взаимодействия, кинетических и гидродинамических размерах молекул и структурных фрагментов, распределении гетероатомных элементов по основным группам компонентов. В конечном итоге от уровня информации по вьш1еуказанным факторам зависит правильность формулировки основных направлений поиска наиболее эффективной каталитической системы, сочетающей высокую активность со структурой пор, обеспечивающей доступ гетероатомных соединений сырья к активным центрам во всем объеме зерна катализатора. [c.21]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    В цикле работ Ю. И. Ермакова с сотр. [45—48] по исследованию реакции гидрогенолиза алканов изучены каталитические системы, полученные взаимодействием металлорганических соединений переходных металлов с поверхностью носителей. В частности исследован гидрогенолиз этана и неопентана на следующих металлах, нанесенных на 5102 Р1, Р1, Мо—Р1, Рд, У—Р(1, Мо—Рс1. Приготовление этих катализаторов включает две стадии 1) закрепление на поверхности носителя ионов Ш или Мо 2) нанесение металл-органпческих соединений Р1 или Р(1 с последующим их восстановлением. Найдено [45], что при гидрогенолизе этана активность Р1-ка- [c.96]

    Процесс жидкофазной изомеризации н-бутана (фирма Shell). Процесс основан на применении каталитической системы раствора хлорида алюминия (около 10%) в трихлориде сурьмы в присутствии хлороводорода [6, с. 319-320 105-107]. [c.96]

    Прусенко Б. E. Каталитические системы и процессы получения низших олефинов и крупнотоннажных продуктов на их осно- [c.97]

    В результате широких исследований во ВНИИСК была разработана промышленная технология получения t u -l,4-полиизопрена (содержание i< -1,4-звеньев 96—98%) полимеризацией в растворе под влиянием каталитической системы на основе алю-минийорганических соединений и галогенидов титана. [c.12]

    В СССР в результате проведенных в Институте Нефтехимического синтеза АН СССР и во ВНИИСК исследований созданы оригинальные каталитические системы для полимеризации циклоолефинов с раскрытием кольца и планируется организация промышленного производства гранс-полипентенамера. [c.13]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Было показано, что при полимеризации бутадиена с использованием гомогенной каталитической системы Т112С12 + А1 (изо-С4Нэ)з образуются линейные полимеры с преимущественным содержанием (- 90%) цис-1,4-звеньев. В условиях полимеризации при низких температурах (<15°С) этот процесс обладает многими чертами полимеризации по механизму живых цепей уменьшение средней молекулярной массы при увеличении концентрации катализатора, увеличение средней молекулярной массы с возрастанием глубины конверсии, узкое ММР и др. Для получения с помощью этой каталитической системы каучуков с приемлемыми технологическими свойствами применяют различные приемы, приводящие к расширению ММР и (или) образованию разветвленных макромолекул. В табл. 4 приведены молекулярные [c.59]

    Каталитические системы на основе алюминийалкилов и галогенидов ванадия или фиолетовой модификации хлорида титана (П1) вызывают образование высокомолекулярного трансЛ -по-либутадиена [32]. В последние годы была открыта возможность синтеза транс-1,4-полибутадиена путем полимеризации в полярных средах (в частности, в водной эмульсии) под влиянием комплексных соединений родия и никеля [27, 33, 34]. [c.181]

    Модификация осуществлялась в растворе полимера, полученного полимеризацией изопрена с помощью каталитической системы R3AI + TI I4 в органическом растворителе (углеводородах) до конверсии мономера 90—95%, после проведения стадий дезактивации, удаления катализатора и стабилизации полиизопрена перед [c.228]

    А1, который становится неактивным при восстановлении до [5, 8], Скорость восстановления ванадия и степень дезакти-вации катализатора зависят от природы каталитической системы, соотношения между алюминийорганическим соединением и соединением ванадия, концентрации соединения ванадия, температуры, а также среды, в которой образуется каталитический комплекс и проводится процесс сополимеризации. Особо резкое падение активности наблюдается в первые минуты после приготовления каталитического комплекса (катализатор стареет). Так, катализатор, приготовленный из триацетилацетоната ванадия У(С5Н702)з и диэтилалюминийхлорида при 25°С, уже через несколько минут после приготовления обладает низкой активностью [6]. О степени дезактивации ряда других катализаторов при хранении можно судить по данным, приведенным на рис. 1 [9]. [c.295]

    Состав сополимера при старении катализатора либо остается постоянным [6], либо изменяется [8] в зависимости от того, содержит ли катализатор центры, активность которых по отношению к этилену и пропилену не изменяется во времени, или несколько типов активных центров, различающихся между собой как по стабильности, так и по константам сополимеризации [10]. Активность катализатора, молекулярная масса образующегося сополимера, а в некоторых случаях и состав последнего зависят от соотношения между компонентами каталитической системы. Оптимальное отношение А1 У не одинаково для разных систем. При сополимеризации этилена и пропилена на системе V(С5Н702)з + (С2Н5)2А1С1 с изменением отношения А1 V от 4 до 30 [г ] сополимера уменьшилась от 2,9 до 0,77 дл/г, что объясняют передачей цепи через алкилалюминий [6]. При использовании других катализаторов столь резкого изменения [т]] не происходит [9]. [c.296]


Смотреть страницы где упоминается термин Каталитические системы: [c.66]    [c.430]    [c.60]    [c.211]    [c.213]    [c.295]   
Смотреть главы в:

Модернизация технологии каталитического риформинга Диссертация -> Каталитические системы

Нефть и нефтепродукты -> Каталитические системы

Катионная полимеризация -> Каталитические системы


Прогресс полимерной химии (1965) -- [ c.0 ]

Инженерная химия гетерогенного катализа (1971) -- [ c.46 , c.171 ]




ПОИСК







© 2025 chem21.info Реклама на сайте