Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические источники тока и электроды

    Электрохимия имеет очень больщое значение, так как закономерности электрохимии являются теоретической основой для разработки важных технических процессов — электролиза и электросинтеза, т. е. получения химических продуктов на электродах прн прохождении тока через растворы (получение хлора и щелочей, получение и очистка цветных и редких металлов, электросинтез органических соединений). Важной областью практического применения электролиза является гальванотехника (электропокрытие металлами и получение металлических матриц). Другая важная область техники, в основе которой лежат электрохимические процессы, — это создание химических источников тока (электрохимических или так называемых гальванических элементов, в том числе аккумуляторов), в которых [c.383]


    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод - анод, на котором идет реакция окисления. На положительно заряженном электроде - катоде идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) перемещаются к аноду, а положительно заряженные ионы (катионы) движутся к катоду. Количественное соотношение между химическим превращением вещества на электродах и электрической энергией определяется законами Фарадея. [c.35]

    Как отмечалось выше, фтор имеет наивысшую электроотрицательность среди всех элементов периодической системы. В связи с этим его применение в качестве положительного электрода в химических источниках тока исключительно плодотворно. Применение фтора в свободном виде крайне затруднено в связи с его большой химической активностью и высокой токсичностью. Было установлено, что использование фторуглерода в качестве положительного электрода и лития в качестве отрицательного электрода в неводных (апротонных) средах дает высокие электрохимические показатели. [c.404]

    За счет протекания этих реакций элемент Якоби вырабатывает электрический ток. В химических источниках тока электрод, на котором протекает электрохимическое окисление, называется анодом, а электрод, на котором происходит электрохимическое восстановление, называется катодом. [c.154]

    Во всех случаях при изготовлении электродов химических источников тока используется такое свойство углерода, как высокая электронная проводимость. Кроме того, углеродные материалы широко используются как добавки, повышающие проводимость активных масс электродов, изготовленных, например, из оксидов металлов. [c.191]

    Как и в случае химического источника тока, электрод, на котором происходит окисление, называют анодом, а электрод, на котором идет-восстановление,—катодом. Однако различие здесь заключается в том, что при электролизе анод заряжен положительно ( + ), а катод отрицательно (—). Для химических источников тока знаки обратные. Это связано с тем, что процессы, протекающие при электролизе, обратны процессам, имеющим место в гальванических элементах. [c.262]

    В основе медно-магниевого элемента лежит электрохимическая система Mg Na l u I. Он является типичным представителем группы водоактивируемых химических источников тока одноразового действия. Водоактивируемые батареи (их также называют наливными) вместе с ампульными и тепловыми батареями образуют класс активируемых, или резервных первичных источников тока. Их отличительная особенность заключается в том, что в период хранения электроды не контактируют с жидким электролитом и приводятся в рабочее состояние (активируются) непосредственно перед разрядом источника тока. [c.246]


    Сажа соответствующего качества потребляется в значительных количествах и имеет широкое применение в различных отраслях промышленности, в особенности в производстве резиновых технических изделий и шин. Она используется также в производстве химических источников тока, электродов, лакокрасочных составов и т. д. [c.152]

    Поскольку потеря электронов отвечает реакции окисления, а их приобретение — реакции восстановления, то можно сказать, что анод — это электрод, на котором происходит окисление, а катод — электрод, на котором происходит восстановление. Поэтому анод одновременно является отрицательным, а катод — положительным полюсом химического источника тока. [c.13]

    При работе любого химического источника тока протекает суммарная химическая реакция взаимодействия окислителя (активное вещество положительного электрода) с восстановителем (активное вещество отрицательного электрода). Максимальная электрическая работа, получаемая при работе источника тока, равна убыли изобарного потенциала для этой реакции  [c.602]

    Обратимые электроды и цепи могут быть рассмотрены в термодинамически обратимом (равновесном) состоянии. Условием, определяющим термодинамическую обратимость электрохимических систем, является протекание через них бесконечно малого тока. Если же через систему проходит измеримый ток, то она перестает быть термодинамически обратимой и переходит или в химический источник тока, или в электролизер. [c.468]

    Значение поляризационных явлений при практическом использовании неравновесных электрохимических систем очень велико. Потенциалы поляризованных электродов определяют напряжение на электролизере и на клеммах химического источника тока, а следовательно, и энергетические характеристики электрохимических систем. При выборе оптимальных условий проведения электрохимических реакций необходимо учитывать природу и величину перенапряжения, поскольку они определяют многие характеристики процесса, например структуру катодных металлических осадков, переход в продукт [c.499]

    Предложена обобщенная модель активной массы (AM) электрода химического источника тока (ХИТ), которая состоит, как минимум, из собственно активного материала (М) и электропроводной (или каталитически - активной) добавки (Д). [c.55]

    Важнейшую роль играет пористая структура углеродного материала, используемого для изготовления электродов. Электроды химических источников тока, как правило, должны содержать в себе достаточное количество жидкого электролита, а в некоторых случаях в них накапливаются продукты электродной реакции. [c.191]

    В конце 50 — начале 60-х годов были разработаны промышленные технологии получения высокопрочных углеродных волокон и тканей, нетканых волокнистых материалов, гибких углеродных проводников с широким диапазоном электросопротивления. Они нашли применение в объектах вооружения, для тепловой защиты вакуумных электрических печей, для электродов химических источников тока, фильтрующих сред. Разработаны и выпускаются углепластики с особыми механическими свойствами, и постоянно возрастает объем их применения в самолетостроении, ракетной технике, в изготовлении спортивного инвентаря, в производстве химических источников тока. В перспективе следует ожидать их использования в автомобилестроении, в качестве несущих элементов строительных конструкций. Ограничениями в их применении являются остающаяся пока высокой стоимость и трудности механизации и автоматизации производства изделий из углепластиков. Дальнейшее развитие выпуска этих материалов реализуется в системе углерод-углерод, сочетающей уникальные механические и теплофизические характеристики. [c.15]

    В настоящее время к ВПУ появился практический интерес в связи с обнаруженными преимуществами в электрохимических показателях при его применении в качестве материала отрицательного электрода в обратимых, а после фторирования как катода в первичных литиевых химических источниках тока [6-3,5]. [c.460]

    Высокопористые волокна с развитой удельной поверхностью и пористостью применяются для получения электродов химических источников тока, фильтрующих систем, высокотемпературной теплоизоляции, электродов для молекулярных накопителей электрической энергии, матриц для хранения коррозионно-активных материалов. [c.569]

    Электрохимическое горючее (восстановитель) и окислитель (рис. 121) хранятся отдельно и по мере потребления поступают на электроды, где вступают в электрохимическую реакцию. Электроды непосредственно в реакции не участвуют, а выступают в роли катализатора. Специальная система обеспечивает отвод продуктов реакции из элемента. Поэтому в отличие от обычных химических источников тока топливный элемент в принципе может работать сколь угодно долго. [c.236]

    Превращение химической энергии в электрическую сопровождается в элементе протеканием электродных реакций восстановления одних веществ и окисления других. Для получения во внешней цепи направленного движения электронов от окисляемого вещества к восстанавливаемому необходимо, чтобы процессы окисления и восстановления веществ были пространственно разделены друг от друга и электроды контактировали между собой через электролит. Поэтому все химические источники тока построены по одной схеме они состоят из электролита, т. е. проводника второго рода, [c.14]


    Определение и классификация. Элементы, в которых происходит окисление обычного топлива или продуктов его переработки (водорода, окиси углерода, водяного газа и др.) и за счет изменения изобарно-изотермического потенциала реакции образуется электрическая энергия, получили название топливных элементов. Позднее это понятие было расширено. Топливными элементами стали называться химические источники тока, в которых активные вещества, участвующие в токообразующей реакции, в процессе работы элемента непрерывно подаются извне к электродам. Комплекс батарей топливных элементов и обслуживающих систем, например установка для охлаждения, называется электрическим генератором. [c.48]

    Почему в химических источниках тока применяют, как правило, пористые электроды От каких параметров зависит электрохимическая эффективность пористого электрода  [c.298]

    Химические источники тока, предназначенные для многократного их использования за счет регенерации активных компонентов электродов в процессе зарядки, называются аккумуляторами. [c.683]

    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох -Ь ге Яес), существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + ге КЫ или анодном Red- - Ох + ге" направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    ДЕПОЛЯРИЗАЦИЯ — снижение или устранение поляризации электродов при работе химических источников тока или при электролизе. Происходит под влиянием деполяризаторов, т. е. веществ, вводимых в электролит или в состав электродов. В качестве деполяризаторов катода используют окислители, анода — восстановители. Деполяризаторы или сами участвуют в электродном процессе, или, не меняя природы процесса, увеличивают его скорость и тем самым снижают поляризацию электрода. [c.85]

    Работы по топливным элементам привели к усовершенствованию других химических источников тока — металле-воздушных элементов и аккумуляторов. Цинк-воздушные элементы, хотя и были известны давно, находили ограниченное применение из-за несовершенства воздушного электрода. Разработка эффективных кислородных и воздушных электродов топливных элементов послужила толчком к улучшению показателей воздушных электродов в цинк-воздушных элементах. [c.227]

    Реакция электровосстановления кислорода относится к числу многостадийных процессов, подвергнутых детальному экспериментальному и теоретическому исследованиям. Интерес к этой реакции вызван ее широкой распространенностью и большим прикладным значением. Так, электровосстановление кислорода наблюдается при коррозионных процессах в водных средах с доступом воздуха и на кислородных электродах химических источников тока. Суммарный процесс восстановления кислорода соответствует уравнениям кислые растворы [c.339]

    На пути широкого использования электрохимических методов в современном производстве стоит проблема интенсификации электродных процессов. С одной стороны, этот вопрос решается на основе достижений диффузионной кинетики. Так, пористые электроды могут быть использованы не только для оптимизации процессов в химических источниках тока, но и при проведении электросинтеза в техническом масштабе. В этой связи представляют интерес так называемые суспензионные и псевдоожиженные электроды — взвеси частиц электродного материала в растворе. При контакте с токоотводящим электродом эти частицы передают ему свой заряд. Электродные процессы протекают по границе каждой из частиц с раствором, что снижает диффузионные ограничения и позволяет сосредоточить в малом объеме большую поверхность для протекания реакции. С другой стороны, интенсификация электродных процессов связана с поисками новых электродных материалов, удовлетворяющих одновременно требованиям высокой активности, селективности, химической устойчивости и экономии. [c.391]

    Электрохимическая система, производящая электрическую энергию за счет протекающих в ней химических превращений, называется химическим источником тока или гальваническим элементом (рис, 2, б). Здесь электрод, пос1>1лающий электроны во внешнюю цепь, называется отрицательным электродом или отрицательным полюсом элемента. Электрод, принимающий электроны из внешней цепи, называется положительным электродом или положительным полюсом элемента. [c.13]

    Любая электрохимическая цепь в принципе может служить источником электрического тока. При соединении крайних электродов металлическим проводником вследствие наличия э.д.с. по проводнику начинают двигаться электроны от электрода с более отрицательным потенциалом к электроду с менее отрицательным потенциалом. Одновременно на поверхности электродов происходят электрохимические реакции, энергия которых служит источником электрической энергии, выделяющейся во внешней цепи. По разным причинам (малая электрическая емкость, малая скорость и необратимость химических реакций, физические изменения электродов при эксплуатации и т. д.) ббль" шая часть цепей не может быть практически использована для получения электрического тока, и лишь немногие имеют прикладное значение в качестве химических источников тока. [c.598]

    Элек фохшчия. Свойства растворов электролитов. Учение об лек-чропроводности проводников второго рода. Удельная и эквивалентная электропроводности растворов электролитов. Подвижность ионов. Кондуктометрия. Химические источники тока. Электродный потенциал, электродные равновесия. Электроды 1 и 2 рода, окислительно-вос- [c.8]

    В технологии электрохимических производств большое значение имеют электролиз и химические источники тока (аккумуляторы, электрохимические элементы). Ток протекает через электролитическую ячейку и электроды, равновесие в системе отсутствует и элёкт-родные потенциалы отличаются от равновесных. Отклонение потенциала электрода от равновесного значения при протекании тока через электрод называется перенапряжением. [c.380]

    УВ из мезофазного пека применяется в узл 1х 1 осмиче-ских аппаратов [9-111] в связи с уникально низким линейным термическим расширением. Частично этот тип У В используется в производстве спортивного инвентаря, а также для межслоевых соединений — электродов-матриц перезаряжаемых литиевых химических источников тока. Механические свойства УВ [c.604]

    Почему в элементах ампульных батарей порнстыс электроды используются значительно реже, чем в химических источниках тока других типов  [c.299]


Смотреть страницы где упоминается термин Химические источники тока и электроды: [c.12]    [c.381]    [c.516]    [c.517]    [c.382]    [c.288]    [c.516]    [c.517]    [c.289]    [c.8]    [c.8]   
Смотреть главы в:

Техника лабораторного эксперимента в химии -> Химические источники тока и электроды

Техника лабораторного эксперимента в химии -> Химические источники тока и электроды




ПОИСК





Смотрите так же термины и статьи:

Источники тока

Источники тока химические

Химический источники тока Источники тока



© 2025 chem21.info Реклама на сайте