Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы электрохимические термодинамически обратимые

    Если электрохимическая система является термодинамически обратимой при постоянных температуре и давлении, то согласно второму началу термодинамики уменьшение свободной энергии Гиббса (АС) при протекании электрохимического процесса определяется выражением [c.105]

    Связь между термодинамическими характеристиками и электродвижущей силой в обратимы <с электрохимических системах. Для [c.294]


    Диаграммы Пурбе (диаграммы состояния системы металл—вода) могут быть использованы для установления границ термодинамической возможности протекания электрохимической коррозии металлов и решения некоторых других вопросов. Эти диаграммы представляют собой графики зависимости обратимых электродных потенциалов (в вольтах по водородной шкале) от pH раствора для соответствующих равновесий с участием электронов (горизонтальные линии) и электронов и ионов Н или ОН (наклонные линии) на этих же диаграммах показаны (вертикальными линиями) равновесия с участием ионов Н" или ОН", но без участия электронов (значення pH гидратообразования). На рис. 151 приведена диаграмма Пурбе для системы алюминий—вода, соответствующая уравнениям табл. 32. [c.218]

    Если через электрохимическую систему проходит измеримый электрический ток Л оиа перестает быть термодинамически обратимой и в завнсимости от направления тока превращается либо в гальванический элемент (э), либо в электролитическую ванну (в). Полезная работа, произведенная системой в необратимых условиях, всегда меньше, чем в состоянии равновесия. Электрическая энергия, генерируемая гальваническим элементом за счет протекания в ней электрохимической реакции, будет поэтому при отборе тока I меньше, чем в состоянии равновесия (т. е. нри / = 0)  [c.22]

    ТЕРМОДИНАМИЧЕСКИ ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ЭЛЕКТРОХИМИЧЕСКИЕ СИСТЕМЫ [c.20]

    Выше всюду принималось, что электрохимическая система находится в термодинамическом равновесии. Если через систему проходит измеримый электрический ток /, то она перестает быть термодинамически обратимой и начинает функционировать как гальванический элемент или как электролитическая ванна. Поскольку полезная работа, произведенная системой в необратимых условиях, всегда меньше ее максимальной работы в обратимых условиях, то и электрическая энергия, генерируемая гальваническим элементом, будет меньше максимальной работы  [c.19]

    С термодинамической точки зрения реакция обратима, если даже бесконечно малое изменение движущей силы приведет к изменению ее направления или, иначе говоря, реакция находится в состоянии равновесия. Это означает, что реакция достаточно быстро реагирует на любое малое изменение независимой переменной. Термодинамическая обратимость есть идеальное состояние, лишь приблизительно применимое к реальным системам. Если электрохимическая реакция протекает с большой скоростью даже при достаточно малом отклонении от состояния равновесия, ее можно назвать обратимой. Данную реакцию можно считать обратимой, если наблюдать за ней каким-либо одним способом (например, измерять потенциал в отсутствие тока), но она может проявлять заметное отклонение от обратимости, если ее изучать в других, медленно изменяющихся условиях, как в полярографии, а также стать полностью необратимой, если ее подвергать быстрым воздействиям, как в условиях некоторых высокоскоростных методов. [c.310]


    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    Ввиду того что абсолютный потенциал отдельного электрода измерить невозможно, все измерения потенциалов в электрохимических системах производятся с помощью электродов сравнения. Для получения приемлемых результатов электрод сравнения должен быть обратимым, и в течение измерения его потенциал должен оставаться постоянным. Теоретически в качестве электрода сравнения можно использовать любой электрод в равновесном состоянии, если известны его термодинамические свойства. Однако ни об одном из реальных электродов нельзя сказать, что он идеален или обладает обратимым равновесным потенциалом. Поскольку некоторые электроды более обратимы и воспроизводятся легче других, они более пригодны в качестве электродов сравнения. [c.128]

    Связь между тепловым эффектом, изменением термодинамического потенциала и электрической энергией в обратимых электрохимических системах [c.13]

    Термодинамика электрохимических систем не может объяснить причины изменения э. д. с. при переходе к необратимому состоянию и установить, как это изменение связано со скоростью протекания электрохимической реакции, т. е. с величиной силы (или плотности) тока, проходящего через электрохимическую систему. Первое предположение о причинах этого явления сводится к тому, что различие между обратимой э. д. с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э. д. с. Ет (определяемой изменением термодинамического потенциала) и падения напряжения в электролите и в электродах Еои = 2/ /, которое зависит от плотности тока. Такое предположение объясняет причину увеличения напряжения на ванне при прохождении через нее тока по сравнению с обратимой э. д. с. той же системы. Точно так же, если обратимое значение э. д. с. гальванического элемента равно Ег, то при отборе тока часть э. д. с. будет расходоваться внутри самого элемента на преодоление электрического сопротивления, вследствие чего [c.296]

    Если электрохимические процессы в гальваническом элементе протекают термодинамически обратимо при силе тока I, равной нулю, то джоулево тепло не выделяется. При условии термодинамической обратимости можно воспользоваться известными формулами для установления количественных связей между электрическими параметрами и величинами, характеризующими химический процесс. Пусть в электрохимической системе термодинамически обратимо при Т = onst протекает процесс [c.316]

    Рекомендации Стокгольмской конвенции были предметом обсуждения на ХУП сессии Международного комитета по электрохимической термодинамике и кинетике (Токио, 1966). Номенклатурная комиссия этого комитета внесла предложение об ограниченном применении терминов э.д.с. и потенциал и о более широком употреблении термина напряжение . Термин потенциал предлагается сохранить лишь в комбинациях электрический (электростатический) потенциал , термодинамический потенциал и химический потенциал . Вместо термина электродный потенциал рекомендуется термин электродное напряжение или напряжение на электроде . Понятие электродвижущая сила — э. д. с. , эквивалентное понятию химическое напряжение электрохимической ячейки (системы) , рекомендуется употреблять только в связи с изменением термодинамического потенциала в ходе обратимой электрохимической реакции и определять его при помощи уравнения [c.160]

    Сущность методов повышения коррозионной стойкости металла заключается в уменьшении термодинамической и электрохимической неустойчивости металла, характеризуемой разностью обратимых потенциалов катодной и анодной реакций Аф=(фк)обр— — (фа)обр в пределах макро- и микрозон, и в увеличении общего кинетического торможения системы путем торможения анодного и катодного процессов. [c.26]

    Процесс разряда ХИТ как процесс превращения одних химических веществ в другие характеризуется изменением химической энергии системы. В идеальном случае в электрохимической системе происходит термодинамически обратимое превращение химических веществ. При этом, как известно из химической термодинамики, максимальная электрическая работа А1 иакс в изобарно-изотермичеоких условиях соответствует изменению энергии Гиббса  [c.16]


    Условие обратимости электрохимической системы было определено в разделе II, А. Однако данное выше определение предназначено только для потенциометрии, и в нем отсутствует четко определенное различие между обратимыми и необратимыми окис-лительно-восстановительными системами. Например, установление равновесия является просто вопросом времени, и в качестве обратимых рассматриваются системы, у которых время, необходимое для достижения состояния равновесия, не превышает нескольких минут. В противоположность этому полярографические данные связаны с кинетикой исследуемых процессов. Поэтому полярографические условия обратимости являются значительно более строгими [99]. Система рассматривается как полярографически обратимая лишь в том случае, если в дополнение к термодинамической обратимости обладает достаточной подвижностью, и окисленная и восстановленная формы очень быстро приходят к равновесию с потенциалом электрода. Таким образом, концентрации электроактивных форм на поверхности электрода не должны меняться во времени при постоянном потенциале. Недостаточно подвижные процессы, даже термодинамически обратимые, в полярографии рассматриваются как необратимые [99]. Имеется относительно небольшое количество обратимых с точки зрения полярографии систем (к счастью, бопьшинство из них является гетероциклическими соединениями). Большинство электроактивных соединений претерпевает лишь необратимые изменения при окислительно-восстановительных процессах. Некоторые из этих систем (например, альдегид — спирт, кетон — спирт) реагируют с другими окислительно-восстановительными системами лишь очень медленно, но процесс может быть ускорен добавлением катализаторов и медиаторов. Однако имеются и такие системы, для которых равновесие не устанавливается вообще. Аналогичные свойства могут наблюдаться при установлении электродного потенциала в растворах таких необратимых систем. Эти трудности часто преодолевались посредством косвенных определений потенциалов и расчетов, подобных описанным в разделе IV. Для изучения необратимых процессов может быть использована полярография она является единственным общим методом, в котором скорость установления отношения Сок/Свос в зависимости от потенциала электрода изме- [c.252]

    В тepмoдинa ичe ки обрати.мых системах обе электрохимические реакции таковы, что их можно провести термодинамически обратимо. В термодина мически необратимых системах хотя бы одна электрохимическая реакция не является обратимой. [c.20]

    Если же подключить эту систему к внешнему источнику напряжения (отрицательный полюс к цинковому электроду, а положительный— к медному) и отрегулировать напряжение внешнего источника тока так, чтобы очень малый ток пошел бы в обратном направлении, то на цинковом электроде будет протекать восстановительная реакция 2НзО++ = Нг + 2Н2О, а на медном — окисление металлической меди Си — 2е = Си +. Здесь электрохимические реакции, протекающие на электродах при прохончдении очень малого тока в одном направлении, отличаются от электрохимических реакций, протекающих при прохождении тока в обратном направлении. Следовательно, в данной электрохимической системе в условиях, наиболее приближающихся к обратимости, обе электрохимические реакции не являются термодинамически обратимыми, и вся система термодинамически необратима. [c.20]

    Так как частные токи /л и /к одинаковы, то в условиях установившегося равновесия заряд металл.з по отношению к раствору, а следовательно, и потенциал электрода ие являются функцией времени они определяются лишь составом системы, ее температурой и давлением. Потенциал электрода в этих условиях называется обратимым или равновесным электродным потенциалом. Величину равновесного электродного потенциала (в условной шкале) можно вычислить при помощи общих термодинамических уравнений, если только известны электродная реакция, активности участвуюш,их в ней веществ, температура и давление. Э.д.с. равновесной электрохимической системы определяется при этом изме-иенпем термодинамического потенциала протекающей в ней реакции. [c.277]

    Электрохимические элементы часто применяют для того, чтобы определить изменение изобарного потенциала химической реакции. Электрическая энергия, вырабатываемая элементом, работающим обратимо, равна полезной работе суммарного процесса, протекающего в элементе, который рассматривается как термодинамическая система. Как известно, полезная работа обратимого процесса является максимальной и равна изменению изобарного потенциала системы AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. д.), протекающими обратимо. Если процесс является обратимым, можно заставить элемент работать в условиях почти полной компенсации ЭДС элемента подключением внещ-ней разности потенциалов. При этом можно провести процесс в электрохимическом элементе бесконечно медленно, приближаясь бесконечно близко к состоянию равновесия. Такому процессу и соответствует измеренная величина , зная которую можно вычислить изменение изобарного потенциала системы AG. [c.244]

    Если электрохимическая система генерирует измеримый электрический ток, то она уже термодинамически не обратима и превращается в гальванический элемент (гальванопару). Часть полезной энергии при необратимом режиме работы утрачивается, переходя в теплоту (теплота Ленца-Джоуля). Гальванический элемент генерирует максимальный ток в режиме короткого замыкания, т. е, в режиме, когда проводимость, 1агрузки (проводника между электродами) заведомо превышает проводимость по электролиту. Следует отметить, что коррозионные гальванопары в большинстве случаев являются короткозамкнутыми. [c.61]

    В заключение следует подчеркнуть, что термодинамическая устойчивость электрохимической системы сплав — электролит (при P,T= onst) определяется, по меньшей мере, двумя параметрами и двумя переменными (см. уравнение (1.17)), т. е. двумя стандартными потенциалами компонентов, отношением активностей ионов в электролите и отношением активностей компонентов в сплаве. Только при соответствии всех этих величин может уетанавливаться обратимый электродный потенциал, означающий равновесие фаз. При нарушении же этого соответствия развиваются электрохимические реакции, которые в конечном счете восстанавливают равновесие. Частным случаем таких превращений может быть СР одного из компонентов (чаще всего электроотрицательного), приводящее к изменению количественного состава или даж полному распаду сплава. [c.28]

    Корреляция фазовой -диаграммы с электрохимическими характеристиками сплава частично обсуждалась в разд. 1.3. Имеется однозначная -аналитическая связь (il.)12) между химическими потенциалами компонентов А и В в сплаве и, соответствующими обратимыми электродными потенциалами по каждому из компонентов, т. е. обратимыми потенциалами реакций (1.6) и (1.7), причем термодинамическое равновесие в системе сплав — раствор электролита имеет место в случае л = Ев=Еа,в-сплав-Это условиё сохраняет силу независимо от того, какая интерметаллическая система подразумевается — гомогенная или гетерогенная, так как обратимые потенциалы реакций (1.6) и (1.7) для каждой из равновесно сосуществующих фаз одни и те же. Таким образом, каждой фазовой диаграмме может быть поставлена в соответствие зависимость обратимого потенциала от состава системы. [c.142]

    Вернемся теперь к мысли, высказанной в самом начале этой главы. Потенциалы таких обратимых окислительно-восстановительных систем можно легко и точно измерить, если избежать скачка потенциала на границе двух жидкостей. Из электрохимических данных можно вычислить коэфициенты активности, изменения свободной энергии и теплоты реакций для обратимых систем, и, что всего важнее, две такие системы, будучи смешаны между собой, практически всегда реагируют в строгом соответствии с предсказаниями термодинамики. Обратимые реакции протекают быстро таким образом, кинетические соображения могут нас не беспокоить и мы, в данном случае, шеем право говорить, что если такие реакции термодинамически возможны, то они, как правило, будут осуществляться и в действительности. Кроме того, под влиянием введения заместителей потенциалы этих реакций изменяются вполне логичным образом они всегда повышаются электроотрицательными заместителями (электроотрицательными, конечно, в том смысле, что и при введении рассматриваемой группы вместо атома водорода сумма . и М-эффектов оттягивает электроны от остальной части молекулы), причем порядок относительных электроотрицательностей всегда получается один и тот же, хотя в большинстве случаев замещение должно про- [c.265]


Смотреть страницы где упоминается термин Системы электрохимические термодинамически обратимые: [c.22]    [c.134]    [c.731]    [c.20]    [c.134]   
Теоретическая электрохимия (1981) -- [ c.2 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Обратимость термодинамическая

Обратимость электрохимическая

Система термодинамическая

Системы обратимые



© 2025 chem21.info Реклама на сайте