Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гальванические покрытия титана н его сплавов

    Получение гальванических покрытий на. титане и его сплавах сопряжено с целым рядом трудностей. Главная из них —низкая прочность сцепления гальванопокрытия с титаном. [c.105]

    Титановые покрытия наносят на железо и никель, используя расплав его хлоридов. в среде аргона при 900-1100 С. На титан и его сплавы после соответствующей подготовки можно наносить гальванические покрытия различными металлами и сплавами. [c.19]


    Титан как сильно электроотрицательный металл, является активным катодом в гальванической паре с железом, медью, алюминием, цинком. Контакт с титаном ускоряет коррозию углеродистой стали, латуни, алюминиево-магниевых и медно-никелевых сплавов. В паре с платиной титан пассивируется, что позволяет использовать его как основу под покрытие платиной и другими благородными металлами [36]. [c.112]

    К. П. Б а т а ш е в, Осаждение гальванических покрытий на титан и его сплавы, ЛДНТП, 1959. [c.171]

    Из цветных металлов применяют алюминий, медь, никель, титан, цинк, олово, свинец, серебро, тантал, их сплавы применяют также металлические защитные покрытия, наносимые различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), плакированием (двухслойные металлы), погружением (горячие покрытия) и др. Их применение ограничено, так как они имеют большой недостаток — пористость. [c.362]

    Электролиты 1—3 — растворы серпой кислоты В электролите 1 с копцектрапиен серной кислоты 180 г/л прн 80—100 С, /я =0,5 А/дм , /=80 100 В. т=(2- 8) ч анодные плепкн толщиной 0,8—2,5 мкм получаются плотными, блестящими, черного цвета Пленки толщинои 0 — 0.3 мкм, полученные в элект раните 2, с концентрацией серной кислоты 400 -/л прн 18—25 °С, А=1 А/дм /=30 П, т=10 мни. служат как подслой перед напесснием гальванического покрытия иа титан и его сплавы Электролит 3. серная кислота 350—400 г/л, соляная кислота 60—65 г/л используют при 40—50 С, Д=2-=-4 А/ды для получения толстых (20—40 мкм) анодных пленок Плотность тока ступенчато повышают через каждые 2—3 мин ка 0,5 А/дм до напряжения пробоя, после которого устанавливается указанная анодная плотность тока, при которой продолжают электролиз до получения пленки заданной толщины. [c.225]

    Эпитаксиальный рост не происходит и в том случае, если поверхность катода покрыта полупроводящими пленками масла, окисла, сульфидов и т. п. Это может иметь место при плохой предварительной обработке подложки, при загрязнении гальванической ванны или когда на таких металлах, как нержавеющая сталь, алюминий, титан и т. д. после их промывки вновь быстро образуются окисные пленки. Слабая адгезия электролитических осадков при неэпитаксиальном осаждении используется в гальванопластике с целью облегчения отделения осадка от подложки. При нанесении гальванических покрытий на полупроводники или диэлектрики важно обеспечить и механическое сцепление типа ласточкин хвост (по методике подготовки неметаллических подложек). Для легко пассивирующихся сплавов разработаны методики, подобные используемым при осаждении покрытий на нержавеющей стали и алюминии (см. выше). Иногда даже при применении специальных методов некоторое количество окислов сохраняется на поверхности и электролитическое покрытие закрепляется на подложке только на небольших участках эпитаксиального осаждения. В этом случае существует опасность получить отслаивание покрытия. Термические напряжения или даже сравнительно слабая шлифовка могут привести к отслоению на несцепленных участках границы раздела. Адгезию можно улучшить путем отжига детали после электроосаждения. При этом окисел, находящийся на границе раздела, растворяется в одном или обоих металлах или диффундирует к границам зерен, а сплавление металлов на границе раздела приводит к [c.343]


    Пайка титана и его сплавов со сталью (углеродистой и нержавеющей) осложняется в связи с тем, что титан обладает относительно малыми коэффициентами линейного расширения и те,плопроводности кроме того, смачиваемость его припоями отличается от смачиваемости других металлов сплавов. В связи с этим при пайке со сталью необходимо иметь большие зазоры, чем пр-и пайке титана с титаном. Даже при удовлетворительной заполняемости зазора припоем в разнородных соединениях не образуется гладкой вогнутой галтели. Предварительное гальваническое покрытие стали никелем, кобальтом или медью, а также горячее лужение значительно улучшают смачиваемость стальной детали. Предел -прочности соединения титана с нержавеющей сталью при применении серебряного припоя составляет 3—8 кг1мм . [c.101]

    Помимо наиболее распространенных способов получения ПТА (гальванического нанесения слоя платины и наварки платиновой фольги на поверхность титанового анода), предложены другие разнообразные методы. ПТА можно подучать нанесением на титан платины диффузионной сваркой в вакууме, напылением расплавленного металла, конденсацией паров платины на титане, помещенном в вакуумной камере [1631, холодной прокаткой титана с листовой платиной с последующей термообработкой в инертной атмосфере или вакууме при 600—1000 °С [164J, покрытием титана платиной или металлами - платиновой группы методом взрыва [165[, методами порошковой металлургии, при получении металлокерамических электродов, в состав которых входят металлы платииовой группы [166), или нанесением их на поверхность в виде тонкого слоя [167]. Применяют нанесение солей платиновых металлов на титан в виде растворов их солей или пасты с последующим термическим разложением их [16Я] и образованием активного слоя, содержащего платиновые металлы, их окислы или смешанные окислы платиновых металлов с окислами неблагородных металлов. Окисные слои платиповых. металлов могут быть получены па поверхности электрода нанесениел гальваническим или каким-либо другим способом тонкого слоя платинового металла или его сплава с последующим его окислением. [c.175]

    В качестве материалов для анодов можно использовать также нержавеющие стали, тантал, покрытый родием (гальванически), титан, медные сплавы. Эффективно использование сплава А1-1п. В морской воде алюминий и некоторые сплавы алюминия имеют потенциал —700-,—600 мВ — меньший, чем М0ЖЧ9 было ожидать, вследствие образования на поверхности оксидной пленки. [c.95]

    Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых — из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя. [c.129]


Смотреть страницы где упоминается термин Гальванические покрытия титана н его сплавов: [c.61]    [c.220]   
Смотреть главы в:

Гальванические проекты в машиностроении Том 2 -> Гальванические покрытия титана н его сплавов




ПОИСК





Смотрите так же термины и статьи:

Покрытие титана и его сплавов

Сплавы гальваническое

Сплавы покрытие сплавами

Сплавы титана

гальванические



© 2024 chem21.info Реклама на сайте