Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристика применяемых ионитов

    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]


    ПРОИЗВЕДЕНИЕ РАСТВОРИМОСТИ — константа равновесия гетерогенной реакции растворения (или обратной реакции осаждения) малорастворимой соли в определенном растворителе. Процессы образования и растворения осадков имеют большое практическое значение для различных отраслей науки и промышленности. Константа равновесия реакции растворения, называемая произведением растворимости ПР , является произведением концентраций соответствующих ионов в насыщенном растворе. Эта величина постоянна при постоянной температуре и давлении и может быть одной из основных характеристик осадка, на основании которой изменяют растворимость осадка, рассчитывают оптимальные условия осаждения. Правило постоянства произведения концентраций вытекает из закона действующих масс, если его применить для насыщенного раствора малорастворимого электролита. Например, в насыщенном растворе хлорида серебра содержатся отдельные ионы Ag+ и С1 , находящиеся в равновесии с твердой фазой Ag l  [c.204]

    Характеристика процесса осаждения. Для осаждения меди можно применять аноды из различных металлов никеля, свинца, алюминия и т. д. Как и при обычном электролитическом осаждении меди, присутствие азотистой кислоты недопустимо осаждение также сильно замедляется в присутствии ионов трехвалентного железа. В связи с тем, что содержание железа в металлическом никеле почти всегда незначительно, перед электролизом к азотнокислому раствору прибавляют немного сернокислого гидразина. При этом трехвалентное железо восстанавливается и, кроме того, полностью удаляются из раствора окислы азота и азотистая кислота. [c.210]

    Характеристика вод по Пальмеру. Классификация Пальмера широко применяется геолога ми-нефтяниками при изучении вод нефтяных и газовых месторождений. В основу этой классификации положено соотношение в воде количеств миллиграмм-эквивалентов ионов щелочных металлов K++Na+, ионов щелочноземельных ме таллов a ++Mg2+ и анионов сильных кислот С1 +  [c.173]

    Очень часто для улучшения рабочих характеристик применяют насосы с комбинированным принципом действия например, комбинации водоструйных и пароэжекторных насосов, геттерных и ионных насосов, диффузионных и криогенных насосов и т. д. [c.402]

    Концентрация водородных ионов. Однозначная связь между этими величинами может быть использована для характеристики кислотности и щелочности различных сред. Кислотные свойства определяются действием водородных ионов, и количественно кислотность среды может быть характеризована активностью а, +. Точно так же щелочные свойства определяются действием гидроксильных ионов, и щелочность среды количественно может быть выражена активностью Дон - Благодаря однозначности связи между этими величинами можно для характеристики как кислотности, так и щелочности сред пользоваться одной какой-нибудь из этих величин. Очевидно, они равноценны в этом отношении. Условились применять для этого активность водородных и о н о в. [c.401]


    В качестве ионов-замедлителей обычно применяют ионы металлов, расположенные в середине четвертого периода системы Д. И. Менделеева, для которых характерно образование прочных комплексных соединений со связью через азот. Критерием применимости данного катиона в качестве замедлителя служит более прочная связь р. з. э. с ионитом в определенных условиях. Поэтому выбрать ионы-замедлители, отвечающие этому требованию, только по константам устойчивости нельзя. Эффективность хроматографического разделения определяется степенью закомплексованности, зависящей от ряда параметров (концентрации, pH и т. д.). Для характеристики степени закомплексованности в нашей]работе [29] была использована величина коэффи- [c.286]

    Как правило, метод электропроводности применялся при проверке теорий растворов электролитов, в исследованиях взаимодействия ионов с растворителем или для выяснения влияния структуры растворителя. Измерения электропроводности, которые могут быть проведены с высокой точностью и при самых различных условиях, дают удобный метод проверки теории межионных взаимодействий. Изучение влияния температуры на электропроводность в водных растворах, что дает характеристики отдельных ионов при каждой температуре, позволило получить информацию о влиянии ионов на структуру воды [100]. [c.61]

    Метод кондуктометрии (измерение электропроводимости, в дальнейшем, электропроводности) находит широкое применение как в фундаментальных исследованиях растворов электролитов, так и при решении многих прикладных задач. Это один из наиболее простых и в то же время точных методов исследования и анализа веществ в широкой области температур, давлений, концентраций электролита (от сильно разбавленных до расплавов) и практически в любых растворителях. То обстоятельство, что электропроводность растворов электролитов может быть измерена с высокой точностью при низких концентрациях, позволяет применять достаточно строгие теории и модельные представления, которые дают информацию о состоянии частиц в растворе, их эффективном размере, подвижности и ассоциации. Сочетание кондуктометрического метода исследования с определением чисел переноса дает возможность получить транспортные характеристики индивидуальных ионов без каких-либо допущений. [c.91]

    Комплексообразователи, применяемые для связывания мешающих ионов, называются маскирующими средствами. С применением маскирующих средств значительно расширяется возможность разделений катионов, так как при этом можно использовать новые специфические свойства отдельных ионов. Часто, применяя маскирующие средства, можно изменять порядок осаждения отдельных компонентов в связи с практическими требованиями характеристики материала. Маскирующие средства применяют не только для разделения катионов путем осаждения, но также при колориметрическом и объемном анализе. [c.106]

    Титрование в неводных и смешанных растворителях открывает возможности аналитических определений, не осуществимых в водном растворе. В неводных растворителях могут быть определены нерастворимые или разлагающиеся в воде соединения, проанализированы без предварительного разделения многие сложные смеси, оттитрованы соединения, кислотные или основные свойства которых в воде выражены очень слабо, и т. д. Расчет кривых титрования во многих неводных растворителях осложняется по сравнению с таким же расчетом для водных растворов неполнотой диссоциации растворенных веществ, образованием ионных пар и т. д. Количественные характеристики этих процессов часто отсутствуют. Сами кривые титрования имеют примерно такой же общий вид, как и кривые титрования водных растворов. Точка эквивалентности в неводных растворах устанавливается также с помощью цветных индикаторов или рН-метров. Конечно, интервал перехода индикаторов и сама их окраска в неводных растворителях могут меняться по сравнению с соответствующими свойствами в водных растворах, однако механизм индикаторного действия сохраняется. В неводных титрованиях обычно применяют те же известные по анализу водных растворов индикаторы — фенолфталеин, метиловый красный и др., широко используют рН-метры, особенно при анализе смесей. [c.217]

    Механизмы А, О, / и /,< применяются и для интерпретации реакций лабильных комплексных ионов. У катионов с внешней электронной оболочкой 5 (Ве ) и s p (катионы подгруппы скандия, редкоземельных элементов и актиноидов, щелочных и щелочно-земельных металлов) скорость реакций образования комплексов в водных растворах тем меньше, чем выше электростатические характеристики иона металла, например, его ионный потенциал фм = м/гм (где гм — заряд иона, Гм — радиус иона). Расположение 5 -катионов в порядке убывания фм приведено в табл, 8.1. [c.387]


    Электрохимическая защита состоит в том, что при смещении электродного потенциала металла коррозионные процессы тормозятся. При этом различают два вида электрохимической защиты анодную и катодную. При анодной защите потенциал смещается в положительную сторону. Защитный эффект обусловлен пассивацией, при которой высокие положительные потенциалы достигаются очень малой анодной плотностью тока. Эффективность анодной защиты зависит от свойств металла и электролита. Основной конструкционный материал, применяемый в нефтегазовой промышленности, это низкоуглеродистая малолегированная сталь, которая слабо пассивируется в таких электролитах, как дренажная (подтоварная) вода в резервуарах, почвенная (грунтовая) влага. Изменчивость характеристики грунтов (минерализация водной фазы, состав газов и строение твердой основы) не позволяет успешно применять анодную защиту в таких условиях. Особое значение в анодной защите имеют ионы галогенов, способствующие образованию питтингов. В силу того, что в грунтах (например, солончаки). и пластовых водах содержится большое количество хлоридов, анодная защита для подземного оборудования нефтегазовой промышленности не применяется. [c.73]

    В разд. VII. 7 показано, как модель ионной атмосферы, развитая Дебаем и Хюккелем, используется для учета межионных взаимодействий в отсутствие внешних электрических полей. В этих условиях интегральной характеристикой действия всех ионов на данный центральный ион является потенциал ионной атмосферы в точке нахождения центрального иона. Для того, чтобы применить модель ионной атмосферы к движущимся под действием внешнего поля ионам, следует уточнить характеристики ее в случае отсутствия внешнего поля, а затем рассмотреть, к каким последствиям приводит появление внешнего поля. [c.456]

    Для определения обменной емкости применяют иониты в водородной и гидроксильной формах. Наиболее полную качественную характеристику ионогенных групп, присутствующих в ионите, дает метод потенциометрического титрования. [c.155]

    Специальный интерес представляет применение теории Дебая — Хюккеля для расчета стандартных термодинамических характеристик реакций в растворе — констант равновесия, тепловых эффектов и т. д. при нулевой ионной силе по экспериментальным данным, относящимся к растворам с конечной ионной силой. При проведении такого рода расчетов получаются уравнения, в которые входит произведение или отношение коэффициентов активности отдельных ионов. Среди различных уравнений, используемых для оценки отношения коэффициентов активности, чаще всего применяются уравнение Дэвис (Vni.103) и уравнение с одним параметром типа (Vni.104). В таких случаях они обычно записываются как  [c.164]

    Для титрования мутных и окрашенных растворов применяют люминесцентные и хемилюминесцентные индикаторы. Использование люминесцентных индикаторов основано иа применении веществ, которые при освещении ультрафиолетовыми лучами изменяют характер свечения в зависимости от изменения свойств среды (pH, концентрации ионов металлов или окислительно-восстановительного потенциала). Поэтому люминесцентные индикаторы используют в методах кислотно-основного титрования, комплексообразования и окисления — восстановления. В табл. 8.1 приведены характеристики некоторых люминесцентных индикаторов. [c.144]

    В отдельных сл чаях для очистки можно применять и другие вещества, например карбонаты и сульфаты. Так, из нитрата стронция можно удалить ионы бария взвесью сульфата стронция и т. п. Необходимо отметить, что способы гетерогенно очистки веществ еще недостаточно освещены в литературе применительно к отдельным соединениям. Однако, пользуясь химической характеристикой очищаемого веп ,ества и удаляемых примесей, можно составить практическую схему очистки и дать оценку ео эффективности. [c.236]

    В целях повыщения рабочего напряжения и других характеристик ХИТ применяют также электролиты на основе неводных апротонных растворителей и ионные расплавы. Максимальная удельная электрическая проводимость апротонных электролитов на 1—2 порядка ниже проводимости водных электролитов (табл. 1.2), поэтому разрядные плотности тока в элементах с апротонными электролитами невелики. [c.46]

    Метод оценки защитной способности покрытий по времени и величине тока, возникающего в таких парах, довольно широко применяется, однако следует предупредить экспериментаторов, что такая характеристика защитных свойств зависит от многих параметров, например от характера ионов электролита, в котором производится измерение. Сказанное можно проиллюстрировать данными, приведенными в табл. 6.1. Анализ приведенных данных показывает, что время появления тока и его установившаяся величина зависят как от характера нанесен- [c.107]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    Из свойств водных растворов в технологии наиболее часто оперируют такими, как концентрация, растворимость газов и твердых веществ, их пересыщение, давление пара летучих компонентов раствора, плотность, вязкость, электрическая проводимость, энтальпия, а из ионно-молекулярных структурных характеристик — активность ионов водорода. Другие характеристики — активность всех компонентов, фактический ионно-молекулярный состав, изменение энтропии, а также температурноконцентрационные коэффициенты свойств в интегральной и дифференциальной формах —применяют при теоретической оценке вклада реальных химических взаимодействий в изменение свойств раствора. [c.74]

    Рассмотрим влияние растворителя на термодинамические характеристики активации ионной миграции [544]. Уравнение (1—44) позволяет формально применить к ионной миграции соотношения термодинамики равновесных процессов, положив ax=zeFflQh, где I — среднее расстояние перескока иона [111]. [c.34]

    Использование геттеро-ионного насоса вместо диффузионного не приводит к заметному изменению рабочих характеристик разборных вакуумных систем. Так, Касуэллу [79] с помощью ионно-распылительного насоса и ловушки Мейснера удалось снизить предельный вакуум всего лишь до 2 10 мм рт. ст. Получившийся в результате состав атмосферы остаточных газов был таким же, что и в случае использования диффузионного насоса. Мейнард [291] для откачки прогреваемой до 100 С внутренними нагревателями разборной системы применил ионно-испарн-тельный насос. Ему удалось достигнуть разрежения около 3 10 мм рт. ст., причем основными газами в остаточной атмосфере были СО, Nj. Аг, На, СН4 и HjO в соотношении, зависящем от рабочих условий. Некоторым преимуществом системы этого типа является отсутствие других, кроме метана, углеводородов. Однако при наличии в системе тлеющего разряда или электронного луча даже небольшой обратный поток паров масла из диффузионного насоса может приводить к постепенному накапливанию пленок твердого полимера или сажи. [c.297]

    Для характеристики фотонного излучения но эффекту ионизации применяют так называемую экспозиционную дозу рентгеновского и гамма-излучений Дэкс- Она представляет собой отношение суммарного заряда всех ионов одного знака, созданных в воздухе, при полном торможеггии всех вторичных электронов, которые были образованы фотонами в малом объеме воздуха с массой (1т к массе воздуха в этом объеме [c.54]

    Водородный показатель. Постоянство ионного ироизведения воды позволяет вычислять концентрацию гидроксид-ионов ио величине концентрации ионов гидроксония и наоборот. Очевидно, что в чистой воде концентрации ионов 0Н+ и ОН одинаковы и равны 10- моль/л. В кислых растворах концентрация ионов ОН+ больще 10 , а ОН--—меньше моль/л. В щелочных растворах, наоборот, [ОН ]<10 , а [0Н-]> Ю моль/л. Соотношением этих концентраций и характеризуется кислотность и щелочность различных водных растворов. Однако поскольку неудобно применять числа с отрицательными показателями степени, для характеристики кислотности и щелочности водных сред используется не само значение концентрации иоиов гидроксония (для простоты нх обычно называют ионами водорода), а его десятичный логарифм, взятый с обратным знаком. Эта величина получила название водородного показателя и обозначается pH. Таким образом, [c.178]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Метод ИК-спектроскопии широко применяется для изучения г[р(щессов комплексообразования в растворах. Он основан на изменениях в ИК-спектрах в результате связывания вещества в комплекс с другим веществом. Например, полоса колебаний в ацетонитриле К а,,-с = 378 см">, А 1/2=10 см- , Емакс = 7,2-10 л/(моль-см)] заметно изменяет свои характеристики при ассоциации ацетонитрила с ионами магния максимум полосы смещается (vмalt( = = 405 см->), полоса становится шире (Д 1/2= 12 см ) и значительно интенсивнее [8макс= 1,21 10 л/(моль-см)]. Изучение ИК-спектров позволяет обнаружить центр в молекуле, ответственный за комплексообразование, так как наибольшие изменения претерпевает частота валентных колебаний той связи, один из, атомов которой участвует в процессе ассоциации. В методе ИК-спектроскопии время регистрации частицы меньше, чем, например, в методе ядерного магнитного резонанса. Поэтому две формы одной и той же молекулы (например, свободная или закомплексованная) регистрируются в виде отдельных полос, тогда как в спектре ЯМР будет одна уширенная полоса. [c.219]

    Необходимо обратить внимание на то, что в качестве индикатора нельзя брать любое вещество, которое дает чувствительную цветную реакцию с определяемым веществом пли реактивом. Из рассмотренной характеристики точки эквивалентности видно, что при титровании нужно установить пе просто отсутствие или минимальное кс1личе-ство одного из реагирующих компонентов. При титровании необходимо отметть некоторую, характерную для каждой реакции, концентрацию реагирующих ионов. Так, если для титрования азотнокислого серебра хлористым натрием применить в качестве индикатора высокочувствительный реактив на серебро (например дитизои), то в точке эквивалентности индикатор не изменит своей окраски. Концентрация серебра в точке эквивалентности равна (А +)=1 10 г-ион/л эта концентрация велика для ряда чувствительных реактивов на серебро. Таким образом, индикатор и условия его применения необходимо выбирать в связи с характеристикой реагирующих компонеьтов и со свойствами раствора вблизи точки эквивалентности. [c.269]

    Метод кондуктометрического титрования основан на изменении электропроводности объема раствора во время протекания в нем химической реакции (пейтрализации, осал<дения, замещения, окисления— восстановления, комилексообразования). В результате реакции изменяется ионный состав раствора. Иоиы с одной абсолютной скоростью и эквивалентной электроироводностью заменяются или иа ионы с другими значениями этих характеристик, или в системе образуется плохо диссоциирующее, малорастворимое или комплексное соединение (особенно хелатное). Кондуктометри-ческое титрование применяют для объемного анализа водных и неводных растворов, физиологических и биологических жидкостей 114 [c.114]

    В отдельных случаях для очистки можно применять и другие вещества, например карбонаты и сульфаты. Так, из нитрата стронция молшо удалить ионы бария взвесью сульфата сТ ронция и т. п. Необходимо отметить, что способы гетерогенной очистки веществ еще недостаточно освещены в литературе применительно к отдельным соединениям. Однако, пользуясь химической характеристикой очищаемого вещества и удаляемых примесей, можно составить практическую схему очистки и дать ориентировочную оценку ее эффективности. Для очистки применяют небольшое количество вещества, около 0,1—0,5% от массы очищаемого продукта. [c.73]

    Одно время применяли так называемый магнитный критерий типа связи,согласно которому связи в ннзкоспиновых комплексах ковалентны, а высокоспиновые комплексы имеют ионную связь. Если низкоспиновость обусловлена принудительным спариванием электронов с образованием дативных связей, например, в цианидных комплексах переходных металлов, то действительно очень велика роль ковалентности. Но в некоторых случаях переход от высокоспиновых комплексов к низкоспиновым происходит при одном и том же характере связи за счет понижения симметрии. Иногда монодентатные лиганды образуют высокоспиновые комплексы, а аналогичные хелаты являются низкоспиновыми. Более того, некоторые комплексы имеют изомерные конфигурации (тетраэдрическую и квадратную) с разными магнитными свойствами. Природа снязи в них одинакова. Поэтому в настоящее время магнитный критерий для характеристики типа связи почти не применяется. [c.132]

    Для характеристики устойчивости (прочности) комплексного иона применяют также величину, обратную константе нестойкости. Ее называют константой устойчивости (/Сусг) или константой образования комплекса. Величины /С и взаимосвязаны  [c.205]

    Для характеристики слабых электролитов применяют константу диссоциации (Кл). Вследствие того, что слабые электролиты диссоциируют на ионы не полностью, з их растворах при диссоциации устанавливается динауиче-ское равновесие между недиссоциированными мо/еку-лами и нонами. Для слабого электролита общей формулы А Вт уравнение диссоциации имеет вид [c.184]

    Строгая взаимосвязь между актйййостями нбйбв вбдйрода и гидроксид-ионов в водных растворах позволяет применять для характеристики реакции среды только одну из этих величии, а именно, активность водородных ионов. Практически чаще пользуются не самой величиной ан+, а ее логарифмом, взятым с обратным знаком эту величину называют водородным показате-i лем и обозначают символом pH  [c.120]

    Расплавы. Ионные расплавы, как правило, обладают высокой удельной электропроводимостью, в несколько раз превышающую электрическую проводимость водных растворов кислот и щелочей. Это свойство используют для получения электрохимическим путем, например, щелочных и щелочно-земельных металлов, алюминия и других веществ, выделение которых невозможно из водных растворов. Расплавы используют в некоторых видах ХИТ. С целью снижения температуры плавления в качестве расплавов часто применяют эвтектические смеси двух или трех солей. Например эвтектика Li l (45 масс. %)—КС1 (55 масс. %) имеет т. пл. 352 °С. Данная эвтектическая смесь обладает наименьшей плотностью по сравнению со смесями других солей, что позволяет получить от ХИТ более высокие характеристики на единицу массы. [c.25]


Смотреть страницы где упоминается термин Характеристика применяемых ионитов: [c.217]    [c.280]    [c.389]    [c.391]    [c.88]    [c.21]    [c.201]    [c.82]    [c.192]    [c.77]    [c.138]    [c.248]   
Смотреть главы в:

Ионообменные высокомолекулярные соединения -> Характеристика применяемых ионитов




ПОИСК







© 2025 chem21.info Реклама на сайте