Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Виды применяемых волокон

    Ацетон, или диметилкетон, СНз—СО—СН3. Бесцветная жидкость с характерным запахом (темп. кип. 56,2 °С) смешивается с водой во всех соотношениях. Очень хороший растворитель многих органических веществ. Широко применяется в лакокрасочной промышленности, в производстве некоторых видов искусственного волокна, небьющегося органического стекла, кинопленки, бездымного пороха, для растворения ацетилена (в баллонах). [c.486]


    Получающийся раствор обладает способностью растворять целлюлозу (вату, фильтровальную бумагу и т. п.) и применяется прн изготовлении одного из видов искусственного волокна (см. стр. 496). [c.575]

    Целлюлоза является главной составной частью организма растений, она придает ему прочность и эластичность. Целлюлоза также состоит из длинных цепочек, составленных из остатков глюкозы, но соединенных друг с другом несколько иначе, чем в молекуле крахмала. Попытки синтезировать целлюлозу еще не привели к положительным результатам, и поэтому ее получают из древесины, соломы и других растительных материалов путем горячей обработки растворами вешеств, растворяющих содержащиеся в этих материалах лигнин и другие примеси. Целлюлозу широко используют для получения бумаги. Хлопок и другие виды растительного волокна, представляющие собой почти чистую целлюлозу, применяют в текстильном производстве для получения тканей. Производные целлюлозы — нитрат целлюлозы, ацетат целлюлозы и другие простые и сложные эфиры целлюлозы — применяют для получения кинофотопленок и искусственного волокна. [c.419]

    Температурный режим формования волокна зависит также от вида получаемого волокна. Так, при формовании текстильных нитей из полипропилена, имеющего молекулярный вес порядка 100 ООО, применяется следующий температурный режим формования  [c.469]

    Оксид и сульфат М.(II) применяются при изготовлении некоторых видов искусственного волокна и для получения других соединений М. Оба оксида М. используются в производстве стекла и эмалей, а сульфат М. (П) в гальванотехнике, для консервирования древесины, для изготовления минеральных красок, при обогащении руд. Хлорид М.(II) является катализатором кроме того, он применяется для изготовления минеральных красок и в пиротехнике, так же как нитрат М.(II). Последний находит применение в ситцепечатании, для бронзирования, в производстве эмалей. [c.64]

    Применение. П. в. в чистом виде применяют для производства фильтровальных и негорючих драпировочных тканей, спецодежды, нетканых изделий, технич. войлока, а также различных теплоизоляционных материалов, используемых при низких теми-рах. Способность П. в. накапливать высокий отрицательный электростатич. заряд используют для изготовления из них лечебного белья. В смесях с другими волокнами П. в. часто применяют для достижения эффекта усадочно-сти . Из таких смесей изготовляют ткани повышенной плотности, рельефные ткани, ковры, искусственную кожу, замшу, пушистые трикотажные изделия. Волокна из гомополимера повышенной синдиотактичности и из смесей поливинилхлорида с нек-рыми полимерами (ацетилцеллюлозой, хлорированным поливинилхлоридом с содержанием хлора 70—72%) после термофиксации не усаживаются даже при темп-рах 100— 130 и используются для изготовления широкого ассортимента изделий. [c.401]


    Б. и. в. вследствие их низкой прочности, особенно в мокром состоянии, обычно выпускают только в виде штапельного волокна- Для этого применяют фильеры с числом отверстий 5000—10 ООО. Волокна с нескольких фильер собирают в общий жгут и без промывки водой направляют па резку и дубление. В результате дубления (вследствие образования межмолекулярных связей при воздействии па белки формальдегида, солей многовалентных металлов или др. полифункциональных соединений) снижается растворимость Б. и. в., повышается пх прочность, уменьшается усадка при воздействии кипящей воды и улучшается сопротивление смина-пию. В нек-рых случаях для устранения усадки волокон в горячей воде их подвергают ацеталированию или дополнительной обработке формальдегидом или хромовыми солями. После отделки волокна промывают, отжимают, сушат и упаковывают. [c.126]

    Капрон лишь один из видов синтетического волокна. Применяя те же исходные продукты — бензол и аммиак, но из леняя технологию процесса получения первичных звеньев и процесса их полимеризации, можно получить смолы другого химического состава, которые дают волокна иного заранее обусловленного свойства. Одним из таких синтетических волокон является найлон, который плавится при более высокой темнературе, чем капрон. [c.135]

    Стеклянные волокна являются наиболее универсальными и эффективными армирующими наполнителями волокнистых композиционных материалов. Их получают вытягиванием из горячих фильер и используют либо в виде комплексных непрерывных нитей, либо превращают в короткие штапельные волокна. После аппретирования, необходимого для защиты элементарных волокон, из комплексных нитей получают ткани. Из-за нерегулярной текстуры тканей стеклянные волокна часто используют в виде матов. Волокна рубят и распыляют вместе с небольшим количеством склеивающего связующего, получая маты, которые легко формуются на кривых поверхностях. Изделия из стеклопластиков на основе волокон с хаотическим распределением по слоям обычно отличаются плавной кривизной и отверстия в них имеют круглую форму. В строительстве стекломаты, пропитанные полиэфирными связующими, широко используются для изготовления небольших деталей, а также вагончиков для рабочих, будок стрелочников или блоков ванных комнат. Они также применяются Б качестве облицовочных плит и шифера. Прозрачность отверж- [c.378]

    Продукты основного органического синтеза применяются в качестве растворителей, а также реагентов при крашении тканей, обработке кож (уксусная и муравьиная кислоты) и т. д., душистых и вкусовых веществ (сложные эфиры), для дезинфекции (формальдегид) и т. д. однако основная масса продуктов основного синтеза служит в качестве сырья для других отраслей химической промышленности. Особенно большое значение приобрело применение их в качестве исходных веществ для дальнейшего синтеза — получения высокомолекулярных синтетических соединений (см, часть XV). На основе продуктов тяжелого органического синтеза получаются, кроме того, синтетические моющие и смачивающие средства, синтетические клеящие вещества, вырабатывается один из видов искусственного волокна — ацетатное волокно и т. д. [c.254]

    Теплопроводность предварительно бромированных графитированных волокон после фторирования при 370 и 390°С в зависимости от вида исходного волокна была в интервале от 5 до 75 Вт/(м-К). Это значительно выше теплопроводности стекловолокна. В связи с этим возникает возможность использования фторированных волокон как наполнителей в эпоксидных или фторопластовых композициях, которые имеют высокую теплоемкость и сохраняют электроизоляционные свойства. К их числу относятся материалы, которые могут применяться для вентиляторов электрических машин, подложек для тонкопленочных резисторов или самих резисторов, электрозащитных просло< К в авиационных конструкциях. [c.401]

    При применении в вакуумных печах специальные требования предъявляются к стабильности теплопроводности и газовыделения. Низкая теплопроводность достигается за счет высокой пористости и расположения волокон предпочтительно перпендикулярно направлениям тепловых потоков. Теплопроводность зависит от пористости материала, диаметра и длины УВ, вида клеящих веществ. Лучшие результаты по изоляции электрических печей получаются при длине У В более 40 мм [9-129] и при изготовлении войлоков из предварительно карбонизованных ГЦ-волокон. Хотя для этих целей применяются волокна длиной от 250 мкм, с увеличением длины от 250 до 750 мкм снижается плотность и теплопроводность войлока (21 кг/м и 0,02 Вт/(м-К) и 11-13 кг/м и 0,01 Вт/(м К) соответственно) [9-127]. Эффективным средством регулирования теплопроводности волокна является его подпрессовывание после термообработки. [c.624]

    Это прочный термопластичный материал с молекулярной массой 300 ООО—400 ООО. При обычной температуре полихлорвинил — твердый материал, однако его можно сделать мягким, гибким, смешивая с труднолетучими растворителями — пластификаторами — дибутиловым или диоктиловым эфиром фталевой кислоты, трикре-зиловым эфиром фосфорной кислоты и др. Из пластифицированного полихлорвинила изготовляют гибкие листы, пленки, формуют под давлением различные изделия, употребляют его для производства искусственной кожи, заш,итных перчаток. Из жесткого, непла-стифицироваиного полихлорвинила изготовляют листы и трубы. Из-за устойчивости к коррозии этот материал заменяет свинец или нержавеюш,ую сталь при изготовлении химической аппаратуры. Из полихлорвинила можно получать и волокна. Это один из самых дешевых видов синтетического волокна. Их применяют для изготовления фильтровальных тканей, рыболовных сетей, трикотажа и медицинского белья (хлориновое волокно). [c.331]


    Технический ксилол применяется в качестве растворителя. Большое практическое значение имеет п-ксилол, используемый для синтеза терефталевой кислоты (стр. 297), полупродукта в производстве важного вида синтетического волокна— лавсана (стр, 418). [c.260]

    Ацетон находит обширное и разнообразное применение. Его спользуют для получения хлороформа, йодоформа, как растворитель в производстве лаков, негорючих кинопленок, одного из видов искусственного волокна (ацетатного). Ацетон применяется для растворения ацетилена, как желатинизатор в производстве порохов и как исходный материал для промышленного получения ряда органических веш.еств. [c.214]

    В качестве датчиков применяются платиновые, вольфрамовые или позолоченные вольфрамовые волокна в виде спиралей, помещенных в каналы металлического блока, через которые проходит газ-носитель. Другой тип катарометра снабжен тирмисторным датчиком, выполненным в виде шарика. Волокна, служащие в качестве датчиков, обычно являются составной частью моста Уитстона, и через них либо пропускают по- [c.86]

    Масса (1 м ) ткани зависит от ее плотности и вида применяемого волокна. Определяют ее по ГОСТ 3811 — 72 Ткани и штучные изделия текстильные. Методы определения линейных размеров и массы . При большой массе спецодежды повышается утомляемость работающих и ухудшается их самочувствие, поэтому применяют для спецодежды хлопчатобумажные ткани, масса 1 котооых составляет 200—500 г, льняные ткани — не более 500 г, а ткани с покрытием — не более 650 г. Ткани массой более 300 г считаются тяжелыми. [c.14]

    Выбор способа формования А. в. пз р-ров (сухой или мокрый) в значительной степени зависит от вида получаемого волокна. При производстве филаментной нити применяется только сухой способ — нить образуется в результате испарепия в прядильной шахте прн повышенной темп-ре (60—80 °С) органич. растворителей из струек раствора, вытекающих из отверстий фильеры. При получении пити высокого номера сухой способ имеет ряд технико-экономич. преимуществ более высокая скорость формования [обычно 6,5—10 м/сек (390— 600 м/мин), а на нек-рых заводах даже выше 11,5. /се (690 м/мин)] и повышенная концентрация полимера в р-ре. Существенное влияние на скорость формования и свойства получаемой нити имеет концентрация паров растворителя в шахте, определяемая в основно 1 количеством подаваемого в шахту подогретого воздуха. При установлении этого параметра необходимо учитывать, что смесь паров органич. растворителя с воздухом при определенном их соотношении взрывоопасна. Поэтому концентрация паров растворителя в шахте обычно бывает пиже 40—50 г м (при этом взрывоопасная смесь еще не образуется). При получении же высокопрочного А. в. концентрацию растворителей иногда поддерживают в пределах 600—700 г/ж (при этом взрывоопасная смесь уже не обра.чуется). [c.114]

    Волокна. В качестве Н. п. могут применяться как непрерывные, так и рубленые (штапельные) волокна длиной от нескольких десятков мкм до нескольких десятков мм (см. табл. 2). В зависимости от соотношения показателей механических свойств полимера и наполнителя, размеров волокон, а также от характера взаимодействия на поверхности раздела полимерная матрица — волокно последние могут проявлять свойства как обычных дисперсных, так и армирующих наполнителей, упрочняющее действие к-рых весьма значительно вследствие реализации определенной доли прочности наполнителя. Для эффективного армирования термопластов длина волокна должна быть не менее 200 мкм при наполнении реактопла-стов применяют волокна различной длины. Волокнистые наполнители пластмасс позволяют значительно повысить физико-механич. свойства, тепло-, износо-, химстойкость и др. показатели пластмасс. При использовании волокон в виде непрерывных нитей получают изделия с исключительно высокими прочностными показателями (см. Армированные пластики, Стеклопластики). [c.172]

    Поливинилхлорид, прочный термопластичный материал, молекулярный вес 300—400 тысяч. При обычной температуре — это твердый материал, однако, его можно сделать мягким и гибким, смешивая с труднолетучими растворителями, так называемыми л а-стификаторами — эфирами фталевой или фосфорной кислот, например дибутил- и диоктилфталаты, трикрезилфосфат и др. Из пластифицированного поливинилхлорида изготовляют гибкие листы (для покрытия полов, отделки стен), пленки, формуют под давлением разные изделия, употребляют для производства искусственной кожи, защитных перчаток. Из жесткого, непластифици-рованного поливинилхлорида изготовляют трубы (они не подвергаются коррозии и заменяют свинцовые при изготовлении химической аппаратуры), детали дверей и окон. В электротехнике поливинилхлорид служит для изоляции проводов и изготовления деталей аппаратуры. Производят из него и изделия ширпотреба — игрушки, спортивные и канцелярские товары, скатерти, занавески. Из поливинилхлорида можно получать и волокна. Это один из самых дешевых видов синтетического волокна. Его применяют для изготовления фильтровальных технических тканей, рыболовных сетей, трикотажа и медицинского белья (хлориновое волокно). Применяя особую обработку, поливинилхлорид можно получить в виде пористого, напоминающего губку материала — пенополивинилхло-рида. Из него готовят искусственную кожу, подложки для ковров, покрытия для пола. [c.463]


Смотреть страницы где упоминается термин Виды применяемых волокон: [c.350]    [c.576]    [c.454]    [c.458]    [c.470]    [c.382]    [c.454]    [c.458]    [c.470]    [c.615]    [c.203]    [c.174]    [c.117]    [c.146]    [c.143]    [c.711]    [c.206]    [c.436]    [c.171]   
Смотреть главы в:

Спецодежда и спецобувь для работников химической, нефтеперерабатывающей и нефтехимической промышленности издание 2 -> Виды применяемых волокон




ПОИСК







© 2025 chem21.info Реклама на сайте