Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства волокон, применяемых

    Применение. Поливиниловый спирт применяется для получения синтетического волокна (винилон, куралон), производство которого в Японии составило в 1953 г. 2500 т [94, 95]. Преимуществами этого волокна являются низкая стоимость, сходство с целлюлозными волокнами по строению, возможность широкого изменения свойств [96]. В Японии эти волокна применяются для изготовления изделий широкого потребления. Опубликованы работы по производству искусственных и синтетических волокон из поливинилового спирта [97—100]. [c.342]


    До 60-х гг. синтетич. волокна применяли гл. обр. для произ-ва изделий технич. назначения (напр., шин, конвейерных лент) и предметов домашнего обихода (ковров, обивочных тканей). В последующие годы одной из основных областей их применения стало изготовление одежды, что связано с улучшением качества и удешевлением синтетич. волокон, созданием способов их текстурирования (см. Высокообъемные нити) и с разработкой новых методов переработки в изделия. Особенно высокие темпы развития характерны для полиэфирных волокон, широко используемых при изготовлении одежды в смеси с хлопковым волокном, и для полиакрилонитрильных волокон, наиболее близких по свойствам к шерсти (табл. 2). Повышение роли X. в. в произ-ве одежды и замедление потребления натуральных волокон, имеющих, как правило, форму коротких отрезков (см. Волокна природные), обусловило увеличение доли штапельных волокон (используемых в смесях с др. волокнами) в общем объеме произ-ва X. в. (см. табл. 1). [c.457]

    Для улучшения свойств волокна применяют сополимеры с полиамидами [42, 49]. Из таких сополимеров, содержащих 55— 80% полиамида, получают извитое волокно, причем во время вытягивания нити обрабатывают водным раствором формальдегида при 40° с последующей сушкой [49]. [c.191]

    После выхода из фильеры струйки расплава, затвердевая, преврашаются в волокна. Для получения более равномерного по толщине и физико-механическим свойствам волокна применяют длинные закрытые шахты, где образующееся волокно обдувается воздухом, нагретым до строго определенной температуры. Чем ниже температура в шахте, тем более аморфным получается волокно и тем полнее должна быть осуществлена при последующем вытягивании волокна ориентация макромолекул в волокне. В противном случае волокно будет обладать низкими физико-механическими свойствами. [c.469]

    Для повышения механических свойств пресс-изделий, в первую очередь ударной вязкости, применяют длинноволокнистые наполнители. Основной вид пресс-материалов с повышенными механическими свойствами — волокнит, получаемый обычно на основе эмульсионной РС. Примерная рецептура волокнита приведена ниже, % (масс.)  [c.169]

    Для производства вискозной текстильной нити и волокна обычно применяют сульфитную целлюлозу 6 содержанием а-целлюлозы 92—93% (см. табл. 1.2). В сульфатной целлюлозе содержание а-целлюлозы достигает 96—98% и несмотря на высокую стоимость ее применение экономически оправдано для производства высокопрочных кордных нитей, где особенно большое значение придается даже небольшому приросту разрывной и усталостной прочности. Что касается высокопрочных нитей текстильного назначения (полинозное и ВВМ-волокна), то их свойства предпочитают регулировать, изменяя условия формования или используя более дешевые целлюлозы [23]. Применение целлюлозы с более низким содержанием а-целлюлозы, например, при производстве полинозного волокна, когда основное влияние на структуру и свойства волокна оказывают условия формования, практически не приводит к снижению его потребительских свойств [24]. [c.26]


    Пластификацию применяют для получения особо прочных кордных нитей, используемых для изготовления тканей, служащих каркасом для авиационных и автомобильных покрышек (стр. 502). Кратность вытяжки пластифицированного волокна достигает 1,7—1,8. Пластификацию проводят при 80—85 °С в особой пластификационной ванне, содержащей 6—10 г л серной кислоты. Изменением условий вытяжки удается в широких пределах изменять физико-механические свойства волокна и получать волокно требуемого качества. [c.455]

    Прерывные способы (бобинный и центрифугальный), несмотря на простоту аппаратурного оформления, недостаточно совершенны. Более совершенные непрерывные способы приема нити дают возможность получить равномерное по свойствам волокно при меньшем числе ручных операций, повысить производительность прядильных машин и создать лучшие условия труда. Однако применяемые для этих способов машины более сложны, причем сложность их возрастает с увеличением числа отделочных операций. Чем выше производительность каждого прядильного места, тем целесообразнее применение более сложных машин непрерывного действия. В производстве волокна, требующего сложных отделочных операций, рационально применять только непрерывные прядильно-отделочные агрегаты в производстве кордного волокна наряду с центрифугальными машинами прерывного действия используются комбайны при получении тонкого текстильного волокна целесообразно применение только более простых бобинных и центрифугальных машин. По мере совершенствования техники машиностроения и автоматизации процессов машины непрерывного действия приобретают все большие преимущества по сравнению с бобинными и центрифугальными. [c.456]

    В рассматриваемых процессах применение находят и катионные ПАВ. Используемые здесь антистатики — это, как правило, длинноцепные соли аминов или длинноцепные четвертичные аммониевые соединения. Они адсорбируются на полярном волокне типа хлопка полярными группами. В случае неполярных волокон типа полиэфиров адсорбция происходит углеводородными радикалами молекулы ПАВ. Обычно антистатиками обрабатывают хлопок и лен, но из прочих нецеллюлозных волокон они вымываются при стирке. Хотя основное назначение антистатиков — придание ткани определенных потребительских свойств они применяются и в текстильной обработке (например, при высокоскоростной печати) для предотвращения механических проблем, в частности, в процессах трения, и исключения искрения. [c.108]

    Волокнит применяется для изготовления изделий с повышенной механической прочностью. Типичным представителем волокнитов, используемых в качестве антикоррозионных материалов, является фаолит — термореактивная пластмасса на основе резольной феноло-формальдегидной смолы. В качестве наполнителя применяются асбест (марки А), асбест и графит (марки Т) или асбест и кварцевый песок (марки П). По свойствам эти марки различаются мало фаолит Т более хрупок и труднее обрабатывается (крошится), чем фаолит А, но зато более теплопроводен и используется для изготовления теплообменной аппаратуры. Фаолит П отличается повышенной теплостойкостью и хорошими диэлектрическими свойствами (в отвержденном состоянии), но по механическим показателям уступает фаолиту А. [c.178]

    Красители, применяемые для крашения волокон в массе, должны быть стойки к действию различных химич. реагентов, а в нек-рых случаях и высоких темп-р, применяемых при производстве синтетич. волокон. Степень дисперсности органич. пигментов должна обеспечивать свободное прохождение частиц пигмента через отверстия фильер, агрегативную устойчивость суспензий пигмента в водных и прядильных р рах, а также необходимую яркость и интенсивность окраски. Обычно применяют пигменты с размером частиц до 1 мкм, что обусловливает минимальные изменения условий формования и физико-механич. свойств волокна (нити). [c.567]

    Форма отверстий оказывает влияние на технологич. и эксплуатационные свойства волокна. Обычно отверстия круглые, на внутренней поверхности донышка Ф. раз-зенкованы на конус. В Ф. для формования из расплава входной канал отверстия имеет диаметр 2—3 мм, переходящий в усеченный конус, оканчивающийся капиллярным отверстием лишь на расстоянии 0,2—0,3 мм от наружной поверхности Ф. Применяются также Ф. с некруглыми отверстиями (в виде креста,треугольника, звезды и др.) для получения из расплава т. наз. профилированных (в том числе полых) волокон, обладающих лучшими эксплуатационными свойствами по сравнению с волокнами круглого сечения. [c.373]

    Древесная мука и целлюлозные волокна. Целлюлозные наполнители, древесная мука, мука из ореховой скорлупы или целлюлозные волокна применяют в пресс-композициях с целью уменьшения усадки при отверждении, повышения прочности при ударе и регулирования текучести. Несомненно, наиболее распространенным наполнителем общего назначения является древесная мука, применение которой обеспечивает получение материала с достаточно хорошими эксплуатационными показателями при относительно низкой стоимости. При этом предпочтительно использовать древесину мягких пород, например сосну, ель, иихту древесную муку твердых пород можно применять как индивидуально, так и в смеси. При применении древесной муки твердых пород водопоглощение несколько понижается. Свойства древесной муки, приготовленной мокрым измельчением в жерновых мельницах или молотковых дробилках и применяемой в пресс-композициях, приведены ниже  [c.149]


    Полипропиленовое волокно может найти применение в строительстве для улучшения механических свойств цемента при добавке в цемент 2,85 вес. 7о волокон добиваются равномерного распределения напряжений на всю массу материала. Это волокно применяют также в медицине в качестве хирургических нитей и марли. Все большим опросом пользуется полипропиленовое волокно в производстве ковров, где оно идет как на изготовление ворса, так и подкладочного материала (табл. 47) [3]. [c.370]

    Исследование фибриллярных белков типа шелка и шерсти представляет крайне трудную задачу, так как они нерастворимы в воде. Шелк состоит из длинных фиброиновых нитей, связанных с другим белком — серицином. Имеются различные данные о молекулярном весе фиброина, однако обычно его принимают равным 84 ООО [108]. Много работ было посвящено выяснению аминокислотного состава фиброина, причем было установлено, что он состоит более чем на 50% из остатков глицина и аланина. На отдельных фракциях фиброина было проведено селективное расщепление с последующим анализом концевых групп. Применяя различные физико-химические методы, такие, как рентгеноструктурный анализ, инфракрасную и ультрафиолетовую спектроскопию, пытались сопоставить данные, полученные при исследовании различных фракций фиброина. Были сделаны также попытки расположить аминокислотные остатки таким образом, чтобы объяснить механические и химические свойства волокна [108]. [c.417]

    Огнезащитные пропитки. Чтобы придать хлопчатобумажным тканям и тканям из искусственного волокна свойства невоспламеняемости, применяют различные огнестойкие вещества, например соли аммония, особенно в сочетании с солями борной и фосфорной кислот, углекислые соли, гидрат окиси алюминия, жидкое стекло и др. [c.260]

    Капрон лишь один из видов синтетического волокна. Применяя те же исходные продукты — бензол и аммиак, но из леняя технологию процесса получения первичных звеньев и процесса их полимеризации, можно получить смолы другого химического состава, которые дают волокна иного заранее обусловленного свойства. Одним из таких синтетических волокон является найлон, который плавится при более высокой темнературе, чем капрон. [c.135]

    Средний молекулярный вес полиэтилентерефталата равен 20000— 30000. Ткани из полиэтилептерефталатного волокна применяют для бытовых и промышленных целей. Текстильные изделия из этого волокна обладают свойствами шерстяных, но более прочны. Одежда из этого волокна [c.675]

    В качестве Н. п. все более широко применяют синтетич. волокна, напр, полиамидные, полиэфирные, полиакрил онитрильные. Пластмассы, содержащие эти волокна, характеризуются исключительно высокой коррозионной и химич. стойкостью, малым коэфф. трения и высокой износостойкостью. Благодаря хорошей адгезии синтетич. волокон к наполняемым полимерам такие пластмассы стойки к действию воды. Недостаток этих Н. п.— сравнительно невысокая теплостойкость, а также ограниченный выбор связующих, т. к. многие из них могут изменять структуру и механич. свойства волокна. Повышение теплостойкости и механич. характеристик пластмасс достигается применением полиимидных и полиимидазольных волокон, а также углеродных нитей последние способны выдерживать темп-ры выше 2000 °С (см. также Органо-волокниты. Термостойкие волокна). [c.173]

    Введение полярных групп, например амино- или сульфогрупп, в молекулы красителя во многих случаях повышает их стойкость к линьке, придавая красителю способность взаимодействовать с полярными группами волокна. Этот способ особенно эффективен в случае шерсти и шелка, представляющих собой полипептиды с большим числом высокополярных групп. Желтый Марциуса (разд. 28-2,А) обладающий сильнокислыми свойствами, можно применять для прямого крашения шерсти и шелка. В случае хлопка, льна и вискозного шелка, которые представляют собой целлюлозные волокна, получение стойкой к линьке окраски прямым способом является более трудной задачей. Первым достаточно удовлетворительным прямым красителем для хлопка был конго красный он содержит по- [c.452]

    В ОСНОВНОМ эти волокна применяют для приготовления одежды и других изделий текстильного производства находят они также и важное промышленное применение в качестве упрочняющих материалов для каучуков или других полимеров — при изготовлении автомобильных шин, транспортерных лент и т. д. Главное свойство волокна — его высокая прочность на разрыв. Действительно, волокна принадлежат к наиболее прочным из известных материалов (см. гл. 9). Это специфическое свойство обусловлено определенным расположением молекул в структуре волокна. Детально этот вопрос будет рассмотрен в гл. 8, в данном же случае достаточно сказать, что волокна обычно содержат очень маленькие кристаллы или кристаллиты и что эти кристаллиты вытянуты, или ориентированы , вдоль волокна таким образом, что длинноцепочечные молекулы располагаются параллельно или почти параллельно оси волокна. Такое геометрическое расположение цепей наиболее эффективно противодействует деформации или разрушению структуры под влиянием растягивающих усилий. [c.14]

    Волокнистые наполнители — асбестовое волокно, хлопковые очесы, древесное волокно, стеклянное волокно — применяют довольно широко в производстве пластмасс, так как они увеличивают прочностные характеристики пластмасс и снижают их хрупкость.. Асбестовое волокно повышает теплостойкость, прочность и ударную вязкость пластических масс. Широко применяют короткое стеклянное волокно, сообщающее пластмассам очень высокие механические свойства, что и.меет особое значение при их использовании в строительных конструкциях (например, стеновые панели, кровельные материалы). Пластмассы с волокнисты.ми наполнителями называют волокнитами. [c.6]

    Чолипропилен получается из пропилена аналогично полиэтилену. Долгое время считалось, что при полимеризации пропилена можно получать лишь маслообразные продукты. Когда же научились проводить стереоспецифичную полимеризацию пропилена, оказалось, что при этом получается прозрачный материал с температурой размягчения 160—170 С, прочностью на разрыв 260— 400 кг/см , хорошими электроизолирующими свойствами. Полипропилен применяется для изготовления высококачественной электроизоляции, деталей электро- и радиоаппаратуры, труб,деталей машин. Продавливая расплав полипропилена через тонкие отверстия (фильеры), получают нити полипропиленового волокна. Это волокно обладает большой прочностью, химической стойкостью. Его применяют для изготовления канатов, рыболовных сетей, фильтровальных тканей. Применение полипропиленового волокна в текстильной промышленности ограничивается его невосприимчивостью к обычным красителям, одпако уже появились красители, окрашивающие это волокно. [c.329]

    Асбестовое волокно применяется для получения фрпкциопиых материалов. Оно также повышает диэлектрические свойства, химическую стойкость и теплостойкость материалов. [c.267]

    Разработки в области технологии крашения шерсти и шелка направлены на снижение температуры крашения путем использования текстильно-вспомогательных веществ, например алки-лоламинов и других интенсификаторов крашения. Широко применяют плюсовочно-запарной метод крашения, обеспечивающий снижение энергетических и трудовых затрат и лучшую сохранность физико-механических свойств волокна. [c.158]

    Существенным недостатком полинозных волокон является их хрупкость и склонность к фибриллированию. Высокомодульные и высоко-ориентированные этого недостатка не имеют. В текстильной промышлен- ости новые виды вискозных волокон иополшуют как в чистО М виде, так и в смесках с хлопком и другими химическими волокнами (например смеси 45% зантрела и 55% хлопка 40% аврила и 60% хлопка 35% аврила и 65% дакрона). При использовании смесок с синтетическими волокнами улучшаются гигроскопичность и антистатические свойства, внешний вид и мягкость. Помимо этого из таких волокон можно получать пряжу извитого характера, обладающую значительно лучшими свойствами, чем извитые волокна из обычного вискозного волокна. Благодаря высокой прочности новые волокна применяют для изготовления тонких и тончайших тканей. Пряжа более низких номеров используется для ковров, декоративных и мебельных тканей, парусины. Вследствие хорошей адгезионной способности эти волокна с успехом могут применяться в изготовлении транспортерных лент, рукавов и других резинотехнических изделий. [c.321]

    Триацетатное волокно арнель имеет целый ряд преимуществ по сравнению с волокном на основе частично гидролизованной ацетилцеллюлозы. Такие свойства как высокая термостойкость, безусадочность, хорошая химическая стойкость позволили расширить области использования этого волокна. В дополнение к обычному ассортименту изделий, вырабатываемых из нитей, штапельное триацетатное волокно применяется для изготовления штапельных тканей как в чистом виде, так и в смесках с другими волокнами, в частности с вискозным волокном и хлопком. Триацетатное волокно дороже ацетатного, однако благодаря лучшим физико-механическим свойствам в некоторых случаях ему отда- [c.327]

    Покровский и Пакшвер [787], для оценки изменения структуры капроновых волокон, подвергнутых различным видам термообработки, применили величину кинетической характеристики теплоты растворения, т. е. количество тепла, выделенное при растворении волокна за определенный промежуток времени. Они установили, что термообработка приводит к повышению плотности волокна. Бодор [788] отмечает, что при этом изменяется также рентгеноструктура, разрывная прочность, удлинение, показатель преломления и другие свойства волокна. [c.256]

    Свойства изделий, изготовленных из латекса или с применением латекса, Определяются свойствами полимера латекса. Придание изделию необходимых свойств обеспечивается выбором соответствующего типа полимера. Например, изделия с высокой маслостойкостью могут быть получены при использовании бутадиен-нитрильных и хлоропреновых латексов для получения латексных лленок, имеющих высокую адгезию к искусственным и синтетическим волокнам, применяют латексы, полимер которых содержит функциональные группы (карбоксилсодержащие, бутадиен-метилвинилпиридиновые и др.). [c.250]

    В некоторых случаях применяют химическую обработку с целью модификации свойств волокна. Примерами такой модификации являются обработка волокна из — поливинилового спирта растворами формальдегида для придания ераство-римости, омыление ацетатных групп (волокно фортизан) для повыигения прочности и химической стойкости и частичный гидролиз полиакрилоиитрила с целью улучшения окрашиваемости волокон. [c.322]

    При различных условиях последующей обработки достигаются изменения свойств волокна, соответствующие условиям его применения. Так, например, в некоторых климатических условиях гид-рофобность полиамидной щетины (из полигексаметиленадипамида) недостаточна для обеспечения требуемой жесткости щетины в зубных щетках. Если применять при полимеризации вместо адипиновой кислоты себациновую, то полученный полимер будет обладать очень малым влагопоглощением, что обусловливает его повышенную жесткость. [c.323]

    Изменяя условия вытяжки, особенно скорость и степень растяжения, можно до некоторой степени регулировать свойства растянутого полимера. На рис. 8.8 показаны типичные кривые в координатах напряжение — деформация для высокопрочных и среднепрочных най-лоновых волокон. Высокопрочные волокна применяют для изготовления шинного корда, где требуется максимальная разрывная прочность, однако последняя связана с высоким значением модуля упругости и малой способностью к растяжению. Волокна средней прочности имеют меньшее значение модуля упругости, но обладают большей способностью к растяжению. Эти свойства ценны в тканых и вязаных изделиях, так как эластичность и мягкость ткани для одежды важнее, чем высокая разрывная прочность. [c.163]

    Текстура наполнителей для органоволокнитов определяется назначением изделия. Для изготовления изделий конструкционного назначения применяют высокопрочные синтетические волокна в виде нитей, жгутов, однонаправленных лент и полотен, кордных, жгутовых и других тканей. В электро- и радиотехнике используют органоволокниты, наполненные тканями или бумагой из волокон типа номекс, лавсан, полипропиленовых. В изделиях, для которых определяющими являются теплофизические свойства органоволокнитов, применяются тепло- и термостойкие безусадочные волокна в виде войлока, матов, трикотажа или многослойных тканей. Органоволокниты, применяемые в качестве защитных слоев, изго-тавливаются из нетканых материалов, а также матов и тканей различного плетения. [c.276]

    Для окраски готового волокна применяются хромовые или кобальтовые комплексы моноазокрасителей, производных ортоаминофенолов, не содержащих сульфогрупп, т. е. красители, по строению и свойствам близкие к ацетонорастворимым красителям, применяемым для окраски ацетилцеллюлозного волокна в массе (см. выше). [c.252]


Смотреть страницы где упоминается термин Свойства волокон, применяемых: [c.312]    [c.134]    [c.250]    [c.175]    [c.7]    [c.333]    [c.342]    [c.7]    [c.350]    [c.584]    [c.171]    [c.291]   
Технология обработки корда из химических волокон в резиновой промышленности (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства волокон, применяемых промышленности

Свойства волокон, применяемых шинной и резинотехнической

Свойства, связанные с характером полимера, применяемого для формования волокна



© 2025 chem21.info Реклама на сайте