Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между классами кислородных соединений

    Связь между классами кислородных соединений. В заключение приводим схему связи между рассмотренными классами кислородных соединений. В этой схеме учтены только солеобразующие окислы, как имеющие главное значение [индиферентные окислы (СО, N0 и др.—см. 1 настоящей главы) не приведены]. [c.125]

    Центральная роль кислорода в систематике химических соединений по классам не случайна, она является отражением реально существующих взаимоотношений химических элементов в условиях земной коры. Кислород — самый распространенный элемент земной коры, на его долю приходится около 49% ее веса, или 53% от общего числа атомов. Если учесть также исключительно высокую химическую активность, т. е. реакционную способность свободного кислорода, станет понятным, почему наиболее распространенными соединениями земной коры являются окислы, гидроокиси и соли.кислородных кислот (на долю всех кислородных соединений приходится больше 98% от веса земной коры). Можно с полным правом говорить о том, что химия нашей планеты — это в основном кислородная химия, поэтому общепринятая классификация, в которой центральное место отведено кислороду, наиболее полно и правильно отражает реальные связи между элементами. [c.70]


    Количество известных к настоящему времени природных алифатических полииновых соединений приближается к 300. Как правило, эти соединения имеют кислородную функцию (кислотную, альдегидную, спиртовую и т. д.) на конце неразветвленной углеродной цепи, а также сложную хромофорную систему непредельных связей. Классификация ацетиленовых соединений но отдельным биогенетически родственным группам и выявление их связи между собой и с другими представителями природных полииновых соединений является непростой задачей. Однако в ряде случаев все же удается проследить определенную генетическую связь между отдельными типами этого класса соединений. [c.67]

    Формально тиокарбонильные соединения аналогичны карбонильным соединениям и характеризуются наличием в их структуре связи С—S. Такая кратная связь серы(П) с углеродом образуется за счет перекрывания 2р-орбиталей углерода и Зр-орбита-лей серы. Из-за различий в пространственной симметрии и распределении электронной плотности между участвующими орбиталями такое перекрывание менее эффективно, чем перекрывание 2р — 2р-орбиталей в связи С==0. Исходя из этого понятно, что тиокарбонильные соединения в общем более реакционноспособны, менее стабильны и в большей степени подвержены стабилизирующим влияниям введенных соседних атомов или групп по сравнению с кислородными аналогами. Кроме того, хотя тиокарбонильные соединения во многих реакциях ведут себя аналогично соответствующим карбонильным соединениям, однако реакционная способность этих классов соединений различна, что обусловлено относительно более мягким характером и более низкой электроотрицательностью серы, а также большей поляризуемостью связи [c.564]

    Хотя Менделеев ушел из профессуры Технологического института еще в декабре 1866 г., однако некоторое время (до 1872 г.) он продолжал в нем чтение лекций это могло быть связано с тем, что как раз в 1868 г. он писал главы, посвященные углероду и углеродистым соединениям, в том числе и углеводородам для своих Основ химии (см. ч. 1, гл. XVI). Главным вопросом и в этих лекциях и в соответствующих главах Основ химии было стремление противопоставить ставшему уже господствующим среди органиков теоретическому представлению об атомности эмпирическое (иЛи, как его называл Менделеев, — реальное) понятие предела. При этом свою теорию пределов (см. доб. 4j и 4к), которая первоначально была выдвинута лишь для органических соединений, Менделеев стремится распространить теперь и на неорганические. В этой связи он особое внимание уделяет металлоорганическим соединениям, которые представляют собой как бы естественный мост, переброшенный между обоими классами химических веществ. Между тем учение об атомности в том виде, как оно развивалось в 60-х годах, было ограничено лишь областью органической химии и базировалось на признании, что атомность С=4, Н = 1, 0 = 2, N = 3. Поскольку перед Менделеевым к концу 60-х годов все настойчивее возникала задача — охватить единой системой все элементы, он, естественно, должен был опираться на такие представления, которые охватывали бы все вообще классы химических веществ, а не только одни соединения углерода. Вот почему от первой статьи о пределах (1861 г.) (доб. 4j) идет прямая линия через лекции по органической химии (1868 г.) (доб. 2п) и соответствующие главы Основ химии (1868 г.) к статье О количестве кислорода в соляных окислах и об атомности элементов (1869 г.) (ст, 4), в которой Менделеев впервые связал с периодическим законом общее свойство кислородных, а затем и водородных соединений всех элементов достигать точно установленного предела. [c.613]


    Аналогично описанным выше гликозидам со связью между агликоном и гликозильным остатком через атом кислорода (0-гликозидам) могут быть построены еще два класса производных по С-1 так называемые 8-гликозиды и N-гликoзиды, образующиеся из остатков моносахаридов и меркаптанов или аминов. Как и 0-гликозиды, они также могут существовать в виде четырех изомеров. Свойства гликозидов всех трех типов весьма существенно зависят от электроотрицательности и основности гетероатомов гликозидной связи. Наиболее специфичны и непохожи на остальные свойства К-гликозидов, особенно если последние образованы из первичных аминов с достаточно высокой основностью. Такие соединения легко получаются непосредственно из моносахарида и амина (например, при непродолжительном нагревании с кислотой), а в водных растворах испытывают таутомерные превращения, аналогичные мутаротации свободных моносахаридов. Последнее особенно резко отличает такие К-гликозиды от их кислородных и серных аналогов, характеризующихся высокой стабильностью циклической системы. [c.21]

    Наличие пероксо-группы, так называемого кислородного мостика , считалось до недавнего времени достаточным для определения понятия неорганическое перекисное соединение . Подробное изучение строения и свойств ряда представителей этого обширного класса соединений, начатое в 30-х годах настоящего столетия при деятельном участии советских ученых, показало, что это понятие объединяет, по крайней мере, девять групп соединений, отличающихся по характеру связи между атомами кислорода в мостике и по характеру связи между кислородным мостиком и элементом, образующим перекисное соединение. Некоторые авторы, в том числе Ф. Гейн [1], склонны рассматривать все неорганические перекиси как комплексные соединения, разделяя их на три группы — полиоксиды, пероксокислоты и пергидраты. Однако в группу полиоксидов включены такие перекисные соединения, кристаллические решетки которых состоят из ионов металлов (преимущественно 1а и Па подгрупп периодической системы элементов Д. И. Менделеева) и из молекулярных анионов со строением [Ю [2, 3], 0 со строением 1 0—0 ] [3, 4] и ОГ со строением [c.11]

    Особый интерес представляет новый класс перекисей—метал-лопероксорганические, в состав которых входят один или несколько атомов металла, перекисные группы и органические радикалы [31]. Учитывая, что для некоторых элементов, как, например, для кремния, единственными известными перекисями, в которых связь между атомами металла осуществляется через. кислородный мостик , являются как раз представители этого класса, можно было бы отнести их к неорганическим перекисным соединениям. [c.16]

    В кн. Д. И. Менделеев. Научный архив , т. 1 (см. № 1501) сообщается также (см. примеч. к 19-й публикации, с. 713) об исключительном интересе изложения бутлеровских идей , которое дает М-в в этих лекциях. Приводятся в связи с этим соответствующие отрывки из лекций (см. с. 713—716), подтверждающие эту мысль, причем отмечается (с. 716), что М-в не только проводил основные идеи бутлеровской теории строения, но и ввел свой оригинальный способ графического обоаначения связей между атомами, при котором линии валентности располагаются в одном направлении (как бы в виде щеточек ) . Развитие М-вым в 1869—1871гг. своего собственного учения о формах соедийений на основе разработанного им представления о предельных п непредельных форумах соединений. (Об этом учении см. Основы химии , вып. 4). Критика М-вым (с. 716—718) структурной теории и понятия атомности (валентности) правильность и неправильность этой критики (с. 718). В этих же примечаниях освещается отношение М-ва к теории строения и делается вывод (см. с. 718), что у него нет разногласий с Бутлеровым в самом главном — в признании взаимного влияния атомов как основы теории хим. строения , а есть полное единство (см. также с. 719—720). Отрицание М-вым лишь метафизического, механистического истолкования этой теории со стороны Кекуле и его последователей (с. 718—719). В сб. 1960 г. (см. № 1506, прим., К доб. 2п , с. 612—614) дается перечень тематических разделов, на которые разбиты этп лекции, причем указывается, что, по-видимому, это было лишь начало целого курса , т. к. в конце текста упоминается о следующем цикле — Спирты . Упоминается (с. 613) о продолжении чтения М-вым лекций в СПб. Технологич. ин-те до 1872 г., несмотря на его уход из профессуры этого учебного заведения еще в декабре 1866 г., и дается возможное объяснение этого факта. Подчеркивается, что главным вопросом и в этих лекциях, и в соответствующих главах Основ химии было стремление противопоставить ставшему уже господствующим среди органиков теоретическому представлению об атомности эмпирическое. .. понятие предела . Отмечается стремление М-ва распространить свою теорию пределов и на неорганические соединения, в связи с чем он уделяет особое внимание металлоорганическим соединениям, представляющим собой как бы естественный мост , переброшенный между обоими классами хим, веществ. Указывается таюке, что от первой статьи о пределах 1861 г. (см. Доб. 4j ) идет прямая линия через описываемые лекции по органич. химии 1868 г. к статье О колич. кислорода... 1869 г. (см. № 178), в которой М-в впервые связал с периодич. законом общее свойство кислородных, а затем и водородных соединений всех элементов достигать точно установленного предела. Сообщается, что описываемые лекции 1868 г. интересны и в том отношении, что в нпх М-в показывает себя отнюдь не противником, а скорее сторонником того теоретического истолкования наблюдаемых фактов в органической химии, которые дает теория химического строения Бутлерова . Упоминается (с. 614) о некотором отношении содержания части лекций к составлению Опыта системы элементов (см. № 176). [c.324]


    Сходство между кислородными и фторными соединениями азота прежде всего объясняется наличием группировок — N0 и —Ыр2 (радикалы -КОг и -КТа существуют в равновесном состоянии с веществами N2 )4 и М2р4), которые входят в виде функциональных групп в молекулы как неорганических, так и органических веществ. Практический интерес к обоим классам веществ определяется энергией, заложенной в связях К—О и М-Р. [c.5]

    Позже анализ с этих позиций структурных данных по окислам и оксо-галогенидам Мо, У, Nb и ряда других металлов позволил распространить область применимости этих правил на более широкий круг металлов и на другие классы соединений [12, 687]. В частности, в работе [687] была рассмотрена стереохимическая аналогия между структурами бинарных кислородных и оксокомплексных соединений переходных металлов. Наконец, в 1969 г. в работе [688] была проанализирована зависимость взаимного расположения кратных связей в комплексах переходных металлов от формальной валентности металла. [c.160]


Смотреть страницы где упоминается термин Связь между классами кислородных соединений: [c.41]    [c.413]    [c.38]    [c.564]    [c.12]   
Смотреть главы в:

Общая химия и неорганическая химия издание 5 -> Связь между классами кислородных соединений




ПОИСК





Смотрите так же термины и статьи:

Соединения классы



© 2024 chem21.info Реклама на сайте