Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физическая природа процессов диспергирования

    КОЛЛОИДНАЯ ХИМИЯ — раздел физической химии, в к-ром рассматриваются процессы образования и разрушения дисперсных систем, а также их характерные свойства, связанные в основном с поверхностными явлениями на границах раздела фаз в этих системах. Термин К. X. связан с тем, что по традиции коллоидами называют наиболее высокодисперсные системы с предельно развитой поверхностью раздела фаз (коллоидные системы). В современном ее значении К. X. является физико-химией дисперсных систем и поверхностных явлений. Особое значение К. X. онределяется тем, что 1) Природные тела — горные породы, организмы растений и животных, а также строительные, конструкционные и др. мате-риа.ды техники — являются обычно высокодисперсными, что и определяет многие их особенности, напр, высокую прочность. 2) Основой многих технологич. процессов и важнейших процессов в природе служат образование и разрушение дисперсных систем сус-пензий, эмульсий, пен, туманов, дымов и пр.) и связанные с ними процессы диспергирования и конденса-циотпшго образования новой фазы, процессы адсорбции, коалесценции, коагуляции и образования нро-ст1)аиственных структур, определяющиеся взаимодействием дисперсных частиц — поверхностными явлениями на границе фаз в дисперсных системах. [c.322]


    Громадные массы осадочных пород, глины, лесса, которые мы встречаем в природе,— все это результат диспергирования твердых горных пород, которое происходит не только под влиянием механических факторов, но и под влиянием химического воздействия (выветривание под действием диоксида углерода и воды), а также под влиянием биологических факторов. Животные, как и растения, своими выделениями способствуют изменению горных пород. Таким образом, в результате всех перечисленных выше процессов горные породы, подвергаясь глубоким физическим и химическим изменениям, могут образовать сложные коллоидные системы. [c.286]

    Сепараторы для разделения эмульсий имеют в химической и смежных с нею отраслях промышленности меньшее распространение. По признаку разделения, характеру движущей силы процесс сепарирования эмульсий аналогичен процессу разделения суспензий и подчиняется тем же закономерностям, однако при расчетах сепараторов для разделения эмульсий часто возникают осложнения, связанные с природой образования этой гетерогенной системы. В первую очередь речь может идти об определении фактической разделяемости эмульсий в центробежном поле конкретной напряженности. В зависимости от наличия и характера стабилизаторов в эмульсии глобулы дисперсной фазы могут изменять свои размеры и агрегатироваться либо измельчаться при механическом или физическом воздействии на среду. Так, перекачка среды центробежным насосом вместо шестеренного или винтового может привести к образованию столь устойчивых эмульсий, что разделение их на сепараторе становится невозможным или малоэффективным. Даже удара струи о стенки тарелкодержателя бывает достаточно, чтобы разделяемость резко снизилась. В этих случаях качество сепарирования улучшается при уменьшении частоты вращения ротора в результате ослабления удара и уменьшения степени диспергирования при подаче жидкости в ротор. С другой стороны, при изменении температуры, добавлении поверхностно-активных веществ, возникновении гальванических пар при подаче эмульсий на сепарирование или в процессе ее разделения может произойти укрупнение глобул, что улучшает условия разделения. [c.71]

    ФИЗИЧЕСКАЯ ПРИРОДА ПРОЦЕССОВ ДИСПЕРГИРОВАНИЯ [c.87]

    Увеличение дисперсности суспензии способствует структурообразованию. Этот процесс резко интенсифицируется с уменьшением размера частиц. И лишь при переходе в область размеров частиц коллоидной дисперсности по мере возрастания степени их участия в броуновском движении процессу структурирования начинает сопутствовать альтернативный — самопроизвольное диспергирование (дезагрегирование). Наибольший размер частиц, при котором возможно образование структуры, называется критическим (с кр)- Его можно определить из условия соизмеримости сил сцепления между частицами в структурной сетке и их весом. Хотя в каждом конкретном случае прочность элементарных контактов между частицами и соответственно прочность возникающих в них структур зависят от физических свойств и химической природы поверхности твердой фазы, состава и свойств дисперсионной среды, наибольший размер частиц, при котором начинает проявляться агрегирование и образование пространственной структуры, составляет Ю м. [c.213]


    Развитие физической химии силикатов и химии кремния в последние годы значительно расширило наши представления о природе и строении различных силикатов, о их поведении в технологических процессах. Работы академика В. И. Вернадского в области геохимии, академика А. Е. Ферсмана в области исследования процессов минералообразования, академика Д. С. Белянкина в области минералогических и петрографических исследований силикатов, работы академиков И. Г. Гребенщикова и А. А. Лебедева в области изучения стекловидного состояния веществ, академика П. А. Ребиндера в области исследования глинистых суспензий и условий диспергирования различных веществ и ряда других ученых представляют собой ценнейший вклад в современную науку. [c.5]

    Душистые вещества в процессе хранения могут отрицательно влиять на физическую природу аэрозольного состава. Они могут менять вязкость составов, расслаивать эмульсии или высаживать в осадок твердую фазу, диспергированную в пропелленте, подобно тому, как происходит осаждение восков в жидких политурах. [c.29]

    Выше мы расс.матрнвали процесс акустического диспергирования сусиензин, исходя из физической природы происходя-п его процесса, однако кинетику процесса акустического диспергирования можно рассчитать, основываясь на его формальной аналогии с кинетикой химического процесса. [c.104]

    Адсорбция газов электродами и диспергированными твердыми телами происходит под влиянием физических и химических сил притяжения, действующих на поверхности этих тел. Подобным же образом, если раствор привести в контакт с твердым телом, в случае инертного растворителя возможна адсорбция растворенного вещества. К силам, ответственным за физическую адсорбцию, относятся дисперсионные (лондоновские) силы, короткодействующее отталкивание и дипольные силы в твердых телах теплота реакции имеет тот же порядок величины, что и теплота конденсации газов, т.е. приблизительно от 1 до 10 ккал моль . В случае хемосорбции происходит переход электронов между твердым телом и адсорбированным слоем, в котором принимают участие силы валентности, и теплота этого процесса фавнима с теплотой химических реаидда (10-100 ккал моль 1). Физическая адсорбция обратима, тогда как химическая необратима. Как в случае адсорбции газа, так и в случае адсорбции из раствора количество адсорбированного вещества на грамм твердого тела зависит от природы адсорбента и адсорбата, условий равновесия, включая температуру, давление, концентрацию. Физическая адсорбция газов на твердых телах максимальна вблизи точки кипения адсорбатов. Это обстоятельство широко используется для измерения поверхности и структуры пор в электродах. Химическая адсорбция в большинстве случаев происходит при таких значениях температуры, давления и соотношениях адсорбата и твердого тела, при которых можно ожидать начала химической реакции между адсорбатом и поверхностью твердого тела. Согласно Зммету [1], "химическая адсорбция имеет место в процессе посадки водорода на металлы, азота на поверх- [c.303]

    Коллоидный графит . В промышленности используются коллоидные растворы, в которых графит диспергирован в зазных растворителях, как, например, в воде, ацетоне и т. д. Несмотря на то что процесс стабилизации графитовых частиц физически неясен, он, по-видимому, зависит от природы используемого растворителя. Тот факт, что отложения графита являются довольно хорошими электрическими проводниками, свидетельствует о наличии весьма совершенной гексагональной сетки углерода значительных размеров. Имеется несколько опубликованных обзоров работ, посвященных коллоидному графиту [965, 1010] (ср. данные работы [671]). [c.48]

    Кинетика гетерогенных процессов обмена в общем случае определяется скоростяхми протекания целого комплекса микро-и макроскопических процессов скоростями химических реакций, интенсивностью адсорбционно-десорбционных процессов, скоростью диффузии реагентов в гидродинамическом пограничном слое и т.д. Полное и точное математическое описание всех этих процессов приводит к громоздким системам дифференциальных и интегро-дифференциальных уравнений, решение которых с необходимой точностью не всегда удается получить не только аналитически, но даже численными методами. Трудности полного математического описания кинетики гетерогенных процессов являются причиной широкого распространения методов формальной кинетики, в которой используются линейные или нелинейные кинетические дифференциальные уравнения, в состав которых входят константы, определяемые в результате обработки экспериментальных данных. Такие кинетические уравнения удовлетворительно описывают кинетику процессов обычно только для отдельных элементов общей поверхности межфазного контакта для отдельного зерна катализатора, для единичного элемента диспергированного адсорбента и т. д. С другой стороны, расчет технологических процессов требует анализа кинетики гетерогенного обмена для всей поверхности межфазного контакта, с учетом реальных условий протекания процесса в конкретном аппарате или реакторе. На практике в большинстве случаев условия протекания гетерогенного обмена неодинаковы в различных частях общей поверхности межфазного контакта и могут различным образом изменяться во времени. Причинами этого являются застойные зоны, флуктуации скоростей относительного движения фаз, пузыри и каналообразованне в реакторах с кипящим слоем и т. д. Таким образом, даже если в распоряжении исследователя имеется адекватное математическое описание кинетики процесса для отдельного элемента поверхности межфазного контакта, переход к описанию кинетики исследуемого процесса на всей поверхности межфазного контакта в условиях реального промышленного аппарата может оказаться достаточно сложным вследствие того, что многие физические процессы, влияющие на функционирование реальных аппаратов, имеют стохастическую природу. [c.197]


    Возможность разработки других загустителей была ускорена благодаря приобретенным познаниям в области физических свойств консистентных смазок. Особенно важным в этом деле были исследования, доказавшие партикулярную природу загустителя. Было установлено, что, поскольку масло может быть удалено растворителями и даже замещено без разрушения структуры, загуститель образует дискретную фазу [2]. В процессе течения из-за ориентации частичек загустителя, что можно наблюдать в поляризованном свете, вязкость консистентных смазок снижается [3]. Наконец, электронный микроскоп дал возможность определить размеры и форму частичек [4]. Таким образом, было установлено, что для получения полутвердой структуры масла могут быть загущены любыми беспорядочно диспергированными мельчайшими, состоящими из отдельных частиц твердыми веществами. Получаются при этом консистентные смазки или нет, зависит от других свойств. [c.271]


Смотреть страницы где упоминается термин Физическая природа процессов диспергирования: [c.87]   
Смотреть главы в:

Крашение пластмасс -> Физическая природа процессов диспергирования

Крашение пластмасс -> Физическая природа процессов диспергирования




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2025 chem21.info Реклама на сайте