Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы суммарного количественного определения органических веществ

    МЕТОДЫ СУММАРНОГО КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.45]

    Разработан ряд приборов и методик для суммарного определения органических веществ в сточных водах быстрый метод (чувствительность менее 2 мг/л), основанный на окислении органических веществ кислородом [1] прибор улучшенной конструкции, позволяющий проводить прямое и точное определение малых количеств углерода (чувствительность 0,5 мг/л) [8] анализатор для непрерывного автоматического определения органического углерода в воде и сточных водах, выполняющий 3 функции 1) предварительную очистку пробы сточных вод для удаления неорганических соединений 2) окисление органических примесей и 3) количественное определение двуокиси углерода [5] автоматический прибор с непрерывным анализирующим устройством, позволяющий за один рабочий цикл из одной пробы определять как органический углерод, так и ХПК [6] прибор для анализа воды в водоемах, позволяющий определить общую концентрацию углерода в воде и концентрацию углерода, входящего в состав органических примесей (чувствительность 1 мг/л, на одно определение затрачивается 2 мин) [7]. [c.101]


    В настоящее время мы не располагаем достаточно чувствительными, точными и избирательными методами определения нефтепродуктов в сточных водах во всем многообразии их количественного и качественного состава. Прежде всего, все методы (за исключением, быть может, методов светопоглощения в инфракрасных лучах и комбинационного рассеяния света) дают суммарное содержание в сточной воде всех веществ, извлекаемых тем или иным органическим растворителем (эфиром, четыреххлористым углеродом). Только будучи уверенными, что в анализируемой сточной воде нефтепродукты являются единственными (или хотя бы значительно преобладающими перед всеми другими) органическими веществами, ее загрязняющими, можно принять, что результат определения выражает содержание нефтепродуктов в воде. [c.249]

    Прямое определение адсорбции реагирующего вещества представляет интерес, поскольку адсорбция всегда, по-видимому, предшествует переносу электрона [1 2 3, глава XI]. Решение этого вопроса затрудняется тем, что на поверхности электрода одновременно присутствуют и исходное вещество и продукты реакции, природа которых зачастую неизвестна. В этом случае методами электрокапиллярных кривых или кривых дифференциальной емкости можно получать только средние значения суммарной степени заполнения. Кроме того, теории потенцио-статических методов изучения электродных реакций с участием органических веществ настолько сложны, что трудно уже рассматривать эти методы как источник надежной количественной информации. Гораздо полезнее при изучении поверхностноактивных реагирующих веществ метод кривых заряжения. Этот метод заключается в исследовании зависимости потенциала электрода от количества пропущенного через электрод электричества в условиях, когда в реакции может участвовать только заранее адсорбированное на электроде вещество. Поляризацию электрода проще всего проводить током постоянной плотности г. [c.47]

    Поглощение света веществом в ИК-области спектра существенно более характеристично. Это обстоятельство предопределило развитие ИК-спектроскопии главным образом как метода идентификации органических веществ или определения одного из них в более или менее сложных композициях. Однако для аналитической химии вод основной интерес представляет полный анализ смеси (идентификация и количественное определение всех основных компонентов) или групповой анализ (идентификация и суммарное определение основных групп соединений аминов, кислот, эфиров, углеводородов и др.). Эта область применения ИК-спектроскопии развита в меньшей степени. [c.246]


    Токсичные элементы не могут быть токсичными сами по себе. Нередко различие между двумя различными элементами в одной форме гораздо менее очевидно, чем между двумя соединениями одного и того же элемента. Так, среди различных химических форм ртути наиболее токсичны органические, а именно, алкильные производные, в то же время для мышьяка характерна обратная ситуация неорганические соединения имеют больший токсический эффект, чем органические, причем As(III) более токсичен, чем As(V) [1]. Кроме того, в природе постоянно происходят процессы, связанные с взаимными превращениями вещества, сопровождающиеся переходом одной формы в другую. В качестве иллюстрации на рис. 2.1 представлен биогеохимический цикл мышьяка в природе, включающий различные типы химических реакций окисление-восстановление и метилирование-деметилирование, которое происходит под воздействием живых организмов (биоты) [108]. Изучение процессов трансформации элементов не представляется возможным без количественных данных о вещественном составе на промежуточных стадиях процессов. Кроме того, определение суммарного содержания элемента в воде без учета возможных химических форм может привести к ошибочному результату из-за зависимости величины аналитического сигнала от характера химической связи в соединении определяемого элемента (электрохи-мические методы анализа, ЭТА ААС). Следовательно, можно заключить, что определение содержаний химических форм элементов несомненно - более важная проблема, чем определение их валового содержания. [c.23]

    Разработан ряд приборов и методик для суммарного определения органических веществ в сточных водах быстрый метод (чувствительность менее 2 мг/л), основанный на окислении органических веществ кислородом [4] прибор улучшенной конструкции, позволяющий проводить прямое и точное определение малых количеств углерода (чувствительность 0,5 мг/л) [5] анализатор для непрерывного автоматического определения органического углерода в воде и сточ ных водах, выполняющий три функции 1) предварительная очистка пробы сточных вод для удаления неорганических соединений 2) окисление органических примесей и 3) количественное определение двуокиси углерода [6] автоматический прибор с непреривным анализирующим устройством, позволяющий за один рабочий цикл из одной пробы определять как органический углерод, так и ХПК [7] прибор для анализа воды в водоемах, позволяющий определить общую концентрацию углерода в воде и концентрацию углерода, входящего а состав органических примесей (чувствительность 1 мг/л, на одно определение затрачивается 2 мин) [8]. По данным [9], в природных водах автоматически определяется суммарный углерод — 20 проб в час, чувствительность 0,2 мг/л. По данным [10], автоматическими приборами одновременно определяются органический углерод и ХПК в течение 2—3 мин в пробах воды и сточных вод от нескольких десятков миллилитров до нескольких десятков микролитров. Пробы воды предварительно выпаривают и после их концентрирования сжигают при 1000°С в токе воздуха в присутствии катализатора. [c.174]

    Фупп (-0-, =0, -ОН, >С=0, -СН=0, СООН, -8-, >8=, >8<, —8Н, —ЫН2, >ЫН, >N—, >Ы, N, и тд ) Анализ веществ нерегулярного строения путем количественного определения всех составляющих его структурных элементов может быть полезным способом представления химического состава исследуемых объектов только при соблюдении трех условий если он обеспечивает полноту описания объекта, обладает способностью количественного мониторинга его химических превращений, обладает способностью предсказания свойств объектов или хотя бы их изменений Конкретный набор фрагментов в каждом случае определяется их представительностью (например, ацетиленовые и алленовые фрагменты для природного органического сырья нетипичны), необходимым уровнем дискретизации (например, замещенные ароматические атомы углерода можно определять либо суммарно, либо раздельно — кислород-, азот-, серо- и углеродзамещенные), а также реальными экспериментальными возможностями метода ЯМР на различных ядрах применительно к объекту (например, спектры [c.13]

    В первых работах по фотосинтезу о скорости этого процесса судили по изменению в содержании углеводов или даже в содержании крахмала. Йодная проба Сакса, позднее приспособленная Маскеллом [212] для количественных определений, давала, например, представление о содержании крахмала. Все подобные методы пригодны, однако, только для сравнительных определений, так как углерод быстро включается в другие соединения, например в органические кислоты и белки. С другой стороны, такой показатель, как прирост сухого вещества, прекрасно отражает видимую фиксацию углерода за относительно долгие периоды. Прирост сухого вещества за счет поглощения минеральных солей обычно считается ничтожно малым в сравнении с тем, что дает фотосинтез (хотя на самом деле он иногда достигает 10% суммарной величины). [c.104]


    Проведена оценка аналитических возможностей поляри зованной люминесценции. Исследована принципиальная возможность проведения количественного анализа двухкомпонентной системы, состоящей из органических веществ с практически совпадающими спектрами люминесценции, по их поляризационным спектрам. Показана зависимость суммарной степени поляризации системы от соотнощения компонентов в ней. Получены формулы, позволяющие оценить влияние различных факторов на суммарную степень поляризации и рассчитать значение индивидуальной интенсивности для каждого из компонентов системы. Проведена экспериментальная проверка полученных математических зависимостей на модельных смесях, состоящих из представителей класса акридиновых красителей, а также на ряде оксипроизводных бензола. Проверка подтвердила правильность полученных математических выражений, показала достаточную чувствительность и точность предлагаемого метода количественного люминесцентного анализа. Максимальная ошибка определения составляла 13% при содержании анализируемых компонентов [c.162]

    При определении ламповым методом элементарной серы, содержавшейся в 0,0117-процентной концентрации в смеси толуола с изопропиловым спиртом, были получены слишком низкие результаты—-от 19 до 63% от взятого количества. Это обстоятельство приводит к заключению, что ламповый метод непригоден для определения элементарной серы и что суммарное определение серы допустимо по ламповому методу только при гарантии отсутствия элементарной серы [62]. Количественное определение тио-фенолов, тиофена и сероуглерода ламповым методом удается в том случае, если эти вещества растворены в таком количестве изопропилового спирта, при котором пламя оказывается почти совсем несветящимся. Определение серы изучалось также и с видоизмененной лампой [70], которая дала лучшие результаты, чем обычная лампа, применяемая для определения хлора и брома в бензине. Приводятся образцы ламп, в которых можно сжигать нефтяные фракции, кипящие в пределах 250—500°. Абсолютная точность метода для водорода 0,02—0,03% считается, что метод может быть использован и для одновременного определения углерода и серы [60]. Органически связанная сульфогруппа в новерхно-стноактивных веществах может быть определена в виде сульфата [c.11]


Смотреть страницы где упоминается термин Методы суммарного количественного определения органических веществ: [c.133]   
Смотреть главы в:

Определение органических загрязнений питьевых, природных и сточных вод -> Методы суммарного количественного определения органических веществ




ПОИСК





Смотрите так же термины и статьи:

Количественный методы

Метод веществам

Методы суммарного определения органических веществ



© 2025 chem21.info Реклама на сайте