Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция реагирующих веществ

    Практическое применение адсорбции. Адсорбция находит разностороннее применение. Мы уже упоминали о том, что при гетерогенном катализе как в газовой среде, так и в растворах процесс адсорбции реагирующих веществ твердым катализатором обычно играет решающую роль. Широко применяются твердые адсорбенты также и в различных процессах очистки газов или растворов от нежелательных примесей или загрязнений Сюда относится, в частности, применение активированного угля для противогазов, введенное благодаря работам Н. Д. Зелинского, спасшего этим много тысяч человеческих жизней. Сюда же относятся и многие процессы очистки и осушки различных газов в производственных условиях и, наконец, процессы осветления и обесцвечивания растворов в производствах сахара, глюкозы, нефтепродуктов, некоторых фармацевтических препаратов и др. [c.376]


    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]

    Согласно современным представлениям, жидкофазная гидрогенизация непредельных соединений, осуществляемая на порошкообразном катализаторе, является сложным процессом, состоящим из многих взаимосвязанных и обратимых стадий 1) растворение водорода в жидкости 2) диффузия молекул водорода и непредельного соединения к поверхности катализатора 3) адсорбция реагирующих веществ на контакте 4) активация молекул водорода и непредельного соединения катализатором 5) акты реакции на контакте 6) десорбция и диффузия в объем молекул продукта реакции. [c.67]

    Когда было установлено значение адсорбционных явлений в гетерогенном катализе, возникло предположение, что каталитическая активность обусловливается повышением концентрации реагирующих веществ на поверхности раздела фаз. Более глубокое изучение этого явления показало, что в каталитическом действии основную роль играет адсорбция реагирующих веществ на наиболее активных центрах поверхности. При этом определенное значение имеют химические взаимодействия, сопровождающиеся изменением свойств адсорбируемых молекул. Что касается природы активных центров, то она изучалась многими исследователями. В итоге было выдвинуто несколько теорий. Основными из них являются мультиплетная теория, теория активных ансамблей и электронная теория. [c.299]


    Адсорбция реагирующих веществ на поверхности катализатора. [c.535]

    Выражение (XII, 112) характеризует зависимость кажущейся энергии активации от истинной для рассматриваемого случая. Как видно из выражения (XII, 112), кажущаяся энергия активации меньще истинной на величину теплоты адсорбции реагирующего вещества. [c.324]

    Все эти выводы получаются при использовании уравнения (51.7), в которое подставляются значения бсо и бс , рассчитанные в результате решения уравнения второго закона Фика при соответствующих начальных и граничных условиях. Поэтому релаксационные методы применяются только при небольших отклонениях от состояния равновесия. Другим ограничением этих методов является предположение о возможности разделения фарадеевского тока и тока заряжения, которое выполняется, если адсорбция реагирующих веществ не отражается на емкости двойного слоя. [c.261]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Однако теория гетерогенного катализа сложнее, чем теория гомогенного катализа. Это объясняется тем, что нужно учитывать адсорбцию реагирующих веществ на поверхности твердого тела, [c.425]

    Формула (48.9) лежит в основе импедансного метода определения тока обмена. Однако в реальных условиях при Е—Е всегда тот или иной вклад в измеряемый импеданс вносит диффузия электроактивных веществ О и Н. Поэтому в эквивалентной электрической схеме последовательно с сопротивлением разряда включается импеданс Варбурга (рис. 131, б). Зависимость составляющих фарадеевского импеданса от частоты при отсутствии специфической адсорбции реагирующих веществ, затрудняющей разделение фарадеевского и нефарадеевского токов, приведена на рис. 132. Экстраполяция прямолинейной зависимости от 1/Коз к бесконечно большой частоте (1/К =0) у сз [c.244]

    Третий тип старения катализатора, часто приводящий к полной потере его активности, вызывается отравлением. Он может состоять как и чисто химическом изменении катализатора, так и в уменьшении величины активной поверхности, вследствие того, что десорбция продуктов реакции происходит медленнее, чем адсорбция реагирующих веществ. [c.8]

    При гетерогенном катализе происходит адсорбция реагирующих веществ, находящихся в газообразной или жидкой фазе, на поверхности твердого катализатора. При этом происходит увеличение их концентрации на поверхности по сравнению с объемной фазой. Если исходить из закона действия масс, это приведет к увеличению скорости взаимодействия. Можно ли сделать вывод, что причиной увеличения скорости реакции в гетерогенном катализе является только увеличение концентрации реагирующих веществ на поверхности катализатора  [c.59]

    Для понимания механизма и причин гетерогенного катализа имеют большое значение два общих положения, обоснованных многочисленными опытными данными 1) катализ связан с адсорбцией реагирующих веществ на поверхности катализатора 2) в каталитической реакции принимает участие не вся поверхность катализатора, а лишь небольшая ее часть, состоящая из отдельных участков, называемых активными центрами. [c.164]

    Действие катализатора связано с адсорбцией. реагирующих веществ (или некоторых из них) на поверхности катализатора, в результате чего либо образуются нестойкие промежуточные соединения, либо разрыхляются связи в адсорбированной молекуле. [c.299]

    Из уравнений (53.11) и (53.12) следует, что скорость стадии разряда — ионизации должна возрастать при увеличении энергии адсорбции реагирующего вещества и продукта реакции, например для разряда ионов НзО" " при увеличении энергии связи Ме—Н. Однако этот вывод относится только к случаю малых заполнений электрода компонентами реакции. Так, по мере увеличения заполнения поверхности адсорбированным водородом с ростом скорость прямого процесса, пропорциональная 1—9н, начнет уменьшаться. Таким образом, кри- [c.275]


    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    Зависимость адсорбции реагирующего вещества от потенциала электрода, а также адсорбция продукта электролиза существенно осложняют изучение электродных процессов с участием органических веществ. [c.397]

    В первом приближении полагают, что ф -потенциал равен потенциалу внешней плоскости Гельмгольца (i 5(,). Однако в условиях специфической адсорбции реагирующих веществ или при их взаимодействии со специфически адсорбированными ионами фонового электролита допущение нарушается. [c.185]

    Малые примеси к активной фазе катализатора (металла, полупроводника), как это объясняется электронной теорией катализа, могут резко повышать ее каталитическую активность и влиять на селективность каталитического процесса. Вокруг чужеродного атома, внедрившегося в поверхность катализатора, образуется зона напряжений, спадающих от центра к периферии, обладающих различной избыточной энергией, широким набором дополнительных локальных уровней энергий адсорбции. Тем самым повышается вероятность возникновения участков, оптимально соответствующих условиям данной реакции. Это обычный механизм промотирования катализаторов. Эффективность промотирующего действия добавок (активаторов, промоторов) растет с интенсивностью вызываемых ими нарушений решетки. Поэтому особенно эффективным нередко оказывается промотирование весьма малыми количествами таких веществ, которые при более высоких их содержаниях отравляют катализатор. Промотор может содействовать течению гетерогенно-каталитической реакции, способствуя адсорбции реагирующих веществ или десорбции продуктов с поверхности катализатора. Так, добавка оксида калия к железному катализатору синтеза аммиака способствует десорбции образующегося аммиака с поверхности. [c.306]

    Наибольшее практическое значение имеют гетерогенно-каталитические реакции, проводимые в условиях проточной системы. При этом фактор продолжительности реакции зависит не только от диаметра реактора и скорости подачи, но и от условий адсорбции реагирующих веществ на поверхности катализатора и его активности. [c.453]

    В ряде случаев оптимальные температуры для проведения гетерогенных каталитических реакций совпадают с областью температур, при которых наблюдается активированная адсорбция реагирующих веществ. Например, температуры, при которых ведется процесс синтеза аммиака, совпадают с температурами, при которых наблюдается активированная адсорбция азота. Как показывают опыты с изотопами азота, молекула азота при активированной адсорбции не расщепляется на атомы. Изо-тоииый обмен N2" -N2 ->2N N " на катализаторе синтеза аммиака прн температурах синтеза хотя и идет, но значительно медленнее самого синтеза. Такой обмен может идти только путем разрыва связей в молекулах азота. Но этот процесс медленный, поэтому он не может быть ответственным за более быстрый процесс синтеза аммиака. Следовательно, в реакции син-тезг аммиака атомы азота участия не принимают, скорость же процесса активированной адсорбции азота, не вызывающего диссоциации молекулы азота на атомы, совпадает со скоростью реакции синтеза аммиака. [c.311]

    Няибольн1ее практическое значение имеют гетерогенно-каталитические реакцип, проводимые в условиях поточного процесса. Фактор продолж1Ттельпостт1 реакцип зависит в эт ом случае ие только от диаметра реактора и скорости подачи, ио и от условий адсорбции реагирующих веществ на новерхности катализатора, а также от активности катализатора. [c.409]

    Второй вид обратной связи может осуществляться вследствие изменения константы скорости реакции при изменении числа свободных центров на поверхности катализатора в ходе реакции. Математическая модель такого типа иследована в [133] на примере окисления окиси углерода на Р1, Р(1, 1г и показано, что роль буфера, хотя он и реагирует с адсорбированной окисью углерода, может играть растворенный в приповерхностном слоем кислород. Если над растворенным в приповерхностном слое кислородом не происходит адсорбции реагирующих веществ или она исчезающе мала, то изменение концентрации растворенного кислорода может приводить к изменению числа свободных мест на поверхности катализатора и к резкому изменению скорости реакции необходимому для возникновения колебаний. [c.318]

    Механизм 1. Импульсом для создания математических моделей реальных гетерогенных каталитических систем, в которых возможно возникновение сложных и хаотических колебаний, послужила работа [146], в которой исследован механизм возникновения хаотических колебаний, состоящий из двух медленных и одной быстрой переменной. Большинство математических моделей, описывающих автоколебания скорости реакции на элементе поверхности катализатора, двумерны, поэтому они не пригодны для описания хаотического изменения скорости реакции. Механизм возникнования хаоса из периодического движения для кинетической модели взаимодействия водорода с кислородом на элементе поверхности металлического катализатора предложен и проанализирован в работе [147]. Модель учитывает основные стадии процесса адсорбцию реагирующих веществ, взаимодействие адсорбированных водорода и кислорода, растворение реагирующих веществ в приповерхностном слое катализатора. Показано, что сложные и хаотические колебания возникают в системе с кинетической моделью из трех дифференциальных уравнений, два из которых описывают быстрые процессы — изменение концентраций водорода и кислорода на поверхности катализатора, и третье уравнение описывает медленную стадию — изменение концентрации растворенного кислорода в приповерхностном слое катализатора. Система уравнений имеет вид [c.322]

    Чисто физическая — адсорбционная теория—объясняет ускорение реакции в присутств ии катализатора адсорбцией реагирующих веществ на поверхности катализатора и активацией адсорбированных молекул, частично за счет теплоты адсорбции. Большая концеятращия молекул в адсорбированном слое должна опособ-ствовать реакции, ускоряя ее. Согласно новым воззрениям молекулы реагарующето вещества не просто адсорбируются поверх-но стью катализатора, а располагаются на поверхно сти катализатора, притягиваясь отдельными частями к особым точкам поверхности катализатора — а-ктивным центрам. Совокупность нескольких разных активных точек на поверхно1Сти катализатора образует каталитический центр, способный адсорбировать реагирующие молеиулы и спо собствовать протеканию реакции. [c.117]

    Гетерогенный катали ) сложное явление, протекает через ряд промежуточных стадий а) адсорбция реагирующих веществ б) реакция на поверхпости в) десорбция продуктов реакции. Главная химическая супшость гетерогенного катализа заключается во взаимодейстнии реагирующих молекул с поверхностью катали.чатора, приводящим к ик активации. [c.157]

    При определении производной (И/йг на основе уравнений (48.1) и (48.2) необходимо учитывать зависимость величин о. й н и г от потенциала. Однако если адсорбция реагирующего вещества изменяет емкость двойного слоя (см. 12), а следовательно, зависит от потенциала электрода, то разделение импеданса двойного слоя и импеданса электрохимической реакции оказывается невозможным. Если предположить, что величины о и не зависят от потенциала (в простейшем случае о=ё к=0) и концентрация поверхностно-неактивного фонового электролита настолько велика, что можно пренебречь зависимостью г гпотенциала от т), то ток обмена не будет зависеть от перенапряжения и дифференцирование уравнения (48.1) по г) в области обычного разряда (а=сопз1) дает [c.243]

    Рассмотрим некоторые закономерности электродных процессов, в которых органическое вещество подвергается электровосстановлению или электроокислению. Изучениеэлектродных процессов с участием органических веществ составляет предмет быстро развивающейся электрохимии органических соединений. Эти электродные процессы могут быть осложнены зависящей от потенциала адсорбцией реагирующих веществ и продуктов реакции. [c.394]

    Входящие в эти уравнения параметры ингибирования 5, 5ь ригу разных авторов нередко имеют различный физический смысл в зависимости от принятой модели и от сделанных допущений при выводе уравнения. Чтобы избежать указанной неоднозначности, можно воспользоваться более корректным способом вывода основного уравнения ингибирования не путем введения поправок в конечное уравнение теории замедленного разряда, а путем полного пересмотра вывода этого уравнения применительно к условиям совместной адсорбции реагирующих веществ и молекул ПАОВ. [c.158]

    Мультиплетная теория ставит геометрическое строение активного центра в прямое соответствие со строением претерпевающей превращение молекулы. Главной основной предпосылкой гетерогенного катализа является интенсивная адсорбция реагирующего вещества на поверхности катализатора. Особенно энергично адсорбируется вещество, когда между расположением атомов в адсорбируемой молекуле и атомов в кристаллической рещетке катализатора существует определенное соответствие. Например, при адсорбции циклогексана на октаэдрических гранях металлов молекула располагается на кристалле (рис. 189). Каталитическое действие происходит тогда, когда соответствующие связи в реагирующей молекуле ослабляются. Для такого ослабления связей необходимо удаление друг от друга соседних атомов в молекуле. Когда размеры постоянной решетки кристалла превышают расстояние между атомами в реагирующей молекуле, связи ослабляются и происходит каталитическое ускорение реакции. Поверхностное соединение образуется из одной или нескольких молекул вещества и из нескольких атомов катализатора. Группа атомов катализатора, вступающих в поверхностное соединение, называется мультиплетом. Обычно эта группа состоит из двух-трех атомов. [c.444]


Смотреть страницы где упоминается термин Адсорбция реагирующих веществ: [c.122]    [c.123]    [c.323]    [c.118]    [c.398]    [c.381]    [c.277]    [c.243]    [c.381]    [c.188]    [c.179]    [c.222]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика электродных процессов при зависящей от потенциала адсорбции реагирующих веществ и (или) продуктов реакции

Лимитирующая ступень — адсорбция реагирующего вещества

Реакция переноса заряда, осложненная адсорбцией реагирующих веществ



© 2025 chem21.info Реклама на сайте