Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сравнение и выбор типа реактора

    Этап выбора типа основного аппарата (реактора). При проектировании нового процесса следует иметь в виду, что тип реактора, его размеры, наряду с режимными параметрами, являются также искомыми. В ходе построения модели необходимо произвести выбор типа реактора путем сравнения возможных вариантов с учетом влияния на процесс особенностей конструктивного оформления аппарата. С этой целью могут быть использованы последовательные расчеты нескольких вариантов и выбор лучшего из них, анализ лабораторных кинетических экспериментов, информация о работе реакторов при осуществлении аналогичных процессов и др. В неко- [c.60]


    СРАВНЕНИЕ И ВЫБОР ТИПА РЕАКТОРА [c.494]

    Сравнение различных типов реакторов. Как подчеркивалось, большинство лабораторных поисковых исследований по синтезу полимеров выполняется в реакторах периодического действия, поскольку организация непрерывного процесса в лаборатории связана обычно с большими техническими трудностями. Поэтому проблема обоснования оптимальной конструкции и типа реактора всегда очень остро встает при планировании технологических разработок. При выборе конкретного типа и конфигурации реактора следует учитывать кинетический механизм процесса изменение вязкости среды по ходу процесса фазовые превращения в ходе процесса условия смешения условия теплоотвода давление в системе  [c.143]

    Основными факторами сравнения химических реакторов, определяющими выбор типа аппарата, являются кинетика химической реакции, отношение порядков основной и побочных реакций, а также распределение времени пребывания реагентов, концентраций и температур в реакционном объеме. Эти факторы в различных типах реакторов могут по-разному влиять на степень превращения реагентов, избирательность их химического превращения, себестоимость получаемого продукта. Одной из важнейших характеристик реактора является его удельная производительность, непосредственно связанная с кинетикой химического процесса и типом аппарата. [c.178]

    Тип протекающих в реакционно-ректификационной колонне реакций влияет на показатели процесса, определяет выбор способа управления процессом и метод его расчета. К первой группе относятся РРП с простыми реакциями. Эта группа подразделяется на две подгруппы РРП с необратимыми реакциями [5, 29] и РРП с обратимыми реакциями [3]. Основным назначением использования РРП с простыми реакциями является увеличение скорости реакций и повышение конверсии исходных реактантов. РРП со сложными реакциями составляют вторую группу. Назначение таких процессов часто не ограничивается увеличением скорости и конверсии, но служит задаче повышения селективности реакции. Примеры РРП с параллельными реакциями представлены в [17, 29] и с последовательными в [12]. В [9] описан РРП со сложной последовательно-обратимой реакцией. Наибольшее число публикаций по РРП касается обратимых реакций вида А+Вч=ьС- -Д. Связано это, в первую очередь, с очевидностью преимуществ РРП в сравнении с обычными реакторами по возможности смещения равновесия за счет использования эффекта ректификации. Между тем, возможности РРП по повышению селективности сложных реакций выявлены еще недостаточно. [c.118]


    В предлагаемом читателю четвертом издании учебника по химии и технологии основного органического и нефтехимического синтеза сохранена теперь уже принятая в большинстве вузов систематизация материала по основным химическим процессам данной отрасли промышленности. Это позволяет в необходимом единстве и без повторений изложить теоретические основы каждого процесса (его химию, термодинамику, механизм, кинетику и катализ) и на этой базе обосновать выбор условий синтеза и типа реакторов, обеспечивающие высокую производительность и селективность. Технологические схемы приводятся в упрощенном, принципиальном виде, обычно в приложении к технологии одного из важнейших продуктов, получаемых при помощи данного процесса. При этом дается обзор альтернативных путей производства основных продуктов и их технико-экономическое сравнение. По убеждению автора, учитывая очень большое число получаемых в данной отрасли продуктов, только такой способ изложения материала будет способствовать глубокому пониманию студентами химии и технологии основного органического и нефтехимического синтеза. [c.7]

    Эти дополнительные факторы часто могут оказаться причиной выбора иного типа реактора по сравнению с тем, который представляется целесообразным при рассмотрении только химической кинетики процесса. [c.143]

    Из приведенных примеров видно, что один и тот же процесс можно осуществить в реакторах различных типов. Выбор оптимальной технологической схемы реактора является сложной задачей, включающей оптимизацию каждой из возможных схем реактора п сравнение их друг с другом. [c.29]

    В книге рассмотрены важнейшие понятия химической кинетики. Изложены основы теории реакторов различных типов (периодического и непрерывного действия, колонных каскадов). Описаны реакторы с твердой фазой (неподвижным и псевдоожиженным слоем катализатора). Рассмотрены случаи протекания в аппаратах реакций, сопровождаемых абсорбцией и экстракцией. Приведены методы расчета реакторов с мешалками (аппараты идеального смешения) и трубчатых реакторов (аппараты идеального вытеснения). Даны сравнение реакторных установок и рекомендации по выбору реакторов. Во втором издании книги (первое издание вышло в 1968 г.) более подробно рассмотрены вопросы моделирования и оптимизации реакторов. [c.4]

    При выборе и сравнении реакторов по кинетическим характеристикам процесса часто пользуются зависимостью между величиной обратной скорости реакции и конверсией. Этот метод позволяет подобрать оптимальный по производительности вариант аппаратурного оформления процесса для кинетического уравнения практически любого типа реакции. [c.132]

    Кроме кинетических закономерностей процесса, которые являются одним из главных факторов при выборе и сравнении типов реакционных аппаратов, во многих случаях следует учитывать и экономическую эффективность зависимость себестоимости продукта и ее слагаемых, а также доход от удельной производительности реактора (рис. 17.15). Эта необходимость объясняется тем, что, как было показано ранее, технологические условия (концентрация, температура, давление, соотношение реагирующих потоков и др.) могут по-разному влиять на такие показатели, как степень превращения, селективность, удельная производительность реактора, а следовательно, и на себестоимость продукта. [c.499]

    Для оптимального осуществления сложных реакций важнейшее значение приобретает их селективность по целевому продукту—она определяет расход сырья, а следовательно, и экономичность производства. Это не означает, что в данном случае вообще не играет роли удельная производительность реактора, она лишь отступает на второй план по сравнению с простыми реакциями. Поскольку удельная производительность реакторов была подробно рассмотрена раньше, в данной главе делается упор на обоснование выбора условий обеспечения высокой или оптимальной селективности процесса. При этом мы полностью отвлечемся от тех очень важных способов регулирования селективности, которые зависят от типа реагентов или катализаторов и области протекания процесса, влияющих на отношение констант А,/А, считая, что их выбор уже сделан на предыдущих стадиях исследования. [c.397]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]


    Сравнение реакторов с различными гидродинамическими и температурными режимами. Сравнение реакторов производят путем анализа уравнения общей скорости процесса (111.26). Таким способом можно выбрать необхолимый тип реактора для конкретного процесса. При выборе следует учитывать, что реакторы смешения работают в изотермических условиях, а в реакторах вытеснения, как правило, адиабатический или политермический режим. При этом повышение температуры в реакторе М — определяется уравнением адиа- [c.88]

    Наряду со старыми маломощными установками типа 43-102 в отрасли эксплуатируются более совершенные и мощные установки с кипящим слоем катализатора типа "флюид" (1-А/1М, ГК-3, 43-103). На их долю приходится почти половина проектной мощности установок каталитического крекинга и около двух третей объема переработки тяжелого сырья, хотя по количеству они составляют одну четвертую часть от всех действующих установок. На сегодняшний день установки типа 1-А/1М остаются основным типом отечественных установок на мелкодисперсном катализаторе. Несмотря на то, что эти установки находятся на более высоком техническом уровне по сравнению с установками типа 43-102, но спроектированные еще в 50-х годах, они ииеют ряд недостатков, связанных с первоначальным выбором показателей, принципиальной схемой оборудования и размеров аппаратов. К основным недостаткам этих установок можно отнести неудачную компоновку реакторного блока несоответствие между проектной мощностью и завышенными размерами основных аппаратов установки - реактора и регенератора неудовлетворительную работу морально устаревших газомоторных компрессоров жирного газа 3 и 10 ГК неудовлетворительное охлаждение газобензиновой фракции после ректификационной колонны. [c.8]


Смотреть страницы где упоминается термин Сравнение и выбор типа реактора: [c.424]    [c.424]    [c.497]    [c.251]    [c.292]   
Смотреть главы в:

Процессы и аппараты химической промышленности -> Сравнение и выбор типа реактора




ПОИСК





Смотрите так же термины и статьи:

Выбор типа реактора

Реактор выбор



© 2025 chem21.info Реклама на сайте