Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоты Образования отрицательных ионов. Сродство к электрону

    ТЕПЛОТЫ ОБРАЗОВАНИЯ ОТРИЦАТЕЛЬНЫХ ИОНОВ. СРОДСТВО К ЭЛЕКТРОНУ [c.62]

    Теплоту образования отрицательного иона можно установить, исходя из теплоты образования нейтральной частицы и сродства к электрону по выражению [c.62]

    Некоторые атомы не обладают положительным сродством к электрону в том смысле, что соответствующие отрицательные ионы нестабильны. Ясно, что благородные газы ведут себя таким образом потому, что дополнительный электрон должен был бы занять орбиталь вне заполненной оболочки. В таких случаях на основе эмпирической экстраполяции можно найти отрицательные значения сродства к электрону значения, установленные таким образом, находят применение при анализе энергетики образования ионных соединений. Так, ион О - в свободном виде нестабилен, и поэтому для него невозможно измерить сродство к электрону. Тем пе менее соединения типа СаО существуют в виде ионных кристаллов. Зная измеренные теплоты образования таких кристаллов и рассчитанные энергии электростатических взаимодействий в решетке, можно для процесса [c.57]


    Из известных значений суммы сродства гидроксильного радикала к электрону и энергии сольватации гидроксильного иона а также теплот образования жидкой воды и гидроксильного ради кала можно ожидать, что АЯ5 будет равна — 1,8 эв минус энергия сольватации электрона в воде. Для этой реакции нельзя ожидать значительного изменения энтропии, так как изменение в сольватации ничтожно. Поэтому вполне возможно, что величина АСд окажется отрицательной. [c.459]

    Электронное сродство отрицательных ионов определяется из спектральных величин. Теплоты образования Q определяются калориметрически. [c.163]

    Для положительно и отрицательно заряженных газообразных ионов в таблицах даны значения их энтальпий образования. Эти величины вычислены на основании значений потенциалов ионизации, сродства к электрону и теплот образования соответствующих нейтральных атомов и молекул. Значения потенциалов ионизации и сродства к электрону, принятые на основании анализа литературных данных и использованные при вычислении энтальпий образования, приводятся в приложениях к выпускам. [c.12]

    В отличие от этих соединеиий в иоде, галогеноводородах, а также в СС1 , FзJ, СОаКз образование атомного иопа галогена X оказывается возможным при энергии электронов, равной или близкой нулк. Так, папример, сечение процесса е -Ь НХ = Н + X имеет максимум иблизи 0,8(НС1), 0,2(НВг и ВВг) и 0,05 Эй (Н1), причем в каждом случае процесс начинается при энергии электронов, почти точно совпадающей с величиной Лцх — (О — теплота диссоциации Е — сродство к электрону). В максимуме вероятности расщепления молекулы НХ под действием электрона с образованием отрицательного иона оказываются величинами порядка от 1 до С, 01. [c.188]

    В других случаях решающее влияние на значение энтальпии может оказать энергия гидратации. Большие значения потенциала ионизации и теплоты сублимации при сравнительно малой теплоте гидратации характерны для малоактивных — благородных— металлов. У элементов, образующих отрицательные ионы, окислительный потенциал тем больше, чем выше энергия гидратации и сродство к электрону и чем меньше энергия образования одноатомного газа из вещества, взятого в стандартном состоянии. Латимер отметил, что, например, большая окислительная активность фтора сравнительно с иодом в основном обусловлена большей теплотой гидратации иона фтора (—514,14 кДж у фтора и —300,96 кДж у иода) различие в значениях сродства к электрону не слишком велико (—384,56 кДж у фтора и —313,5кДж у иода) .  [c.88]


    При появлении тока положительное электричество течет от хлорного электрода по внешнему проводнику к водородному электроду. У этого электрода водород переходит в раствор в виде положительного иона, в то время как у хлорного электрода хлор переходит в раствор в качестве отрицательного иона. Выделяемое таким путем при образовании разбавленной соляной кислоты количество энергии составляет в соответствии с уравнением (3) (стр. 166) 31,3 ккал/моль НС1. Это количество равно сумме свободной энергии образования НС1 и свободной энергии растворения H I в воде. Вычитая последнее (8,6 ккал/моль), получают значение свободной энергии образования НС1, равное 22,7 ккал, в то время как спектроскопически было найдено значение 22,76. Значения нормальных потенциалов, приведенные в таблице, были измерены непосредственно. Однако они могут быть рассчитаны также посредством кругового процесса, приведенного на стр. 174 и сл., иа спектроскопически определенных значений энергий диссоциации и сродства к электрону. Учитывая температурную зависимость значений энергии, получают, как показал Макишима (Makishima, 1935), хорошее совпадение рассчитанных таким образом величин с наблюдаемыми. При этом оказывается, что, как и в случаях, указанных в гл. 6 и 8, для значений нормальных потенциалов опре-деляюпщми являются по существу теплоты гидратации. [c.827]

    Здесь необходимо подробнее остановиться на одном обстоятельстве. При расчете теплот образования углеводородов или ионов углеводородов не обязательно знать потенциал ионизации валентного состояния углерода, так как он исключается (см. разд. б.З). Однако при расчете потенциалов ионизации или сродства к электрону положение меняется при этом сравниваются две системы с различным числом электронов, так что необходимо знать абсолютные энергии связи входящих в них электронов. Если принять то значение которое используется в методе Паризера — Парра [разд. 5.3 и выражение (5.13)], значения потенциалов ионизации и сродства к электрону будут завыщены. Приведенные в табл. 7.5 и 7.6 значения были найдены исходя из значительно меньшей величины (9,59 эВ). Существует два возможных объяснения такого кажущегося расхождения. Во-первых, может оказаться, что эффективный потенциал ионизации для 2/ -электрона в атоме углерода, входящем в молекулу, будет меньше, чем в изолированном атоме углерода в методе Паризера — Парра используются, разумеется, величины для атома в соответствующем валентном состоянии. Эта точка зрения энергично пропагандировалась Джал-гом [7]. Другая возможность состоит в том, что значение 1 (. может меняться с изменением формального заряда молекулы. Конечно, следует ожидать, что орбитали в положительном ионе будут стремиться сжаться из-за наличия избыточного положительного заряда остова. Если это так, то энергия иона должна быть меньше величины, полученной в наших расчетах в предположении, что МО как у ионов, так и у нейтральных молекул строятся из АО одного и того же размера. Это в свою очередь приводило бы к завышенным значениям расчетных потенциалов ионизации. Если для различных ионов эти разности будут приблизительно одинаковыми (что является достаточно, разумным предположением), то они могли бы компенсироваться соответствующим изменением величины, которую мы принимаем для Wa. Точно так же МО отрицательных ионов должны быть более диффузными, чем в соответствующей нейтральной молекуле в таком случае наша методика переоценивала бы энергию связи в анионе, а значит, и сродство к электрону исходного углеводорода. Здесь это также можно было бы скомпенсировать, принимая для W несколько меньшее значение. [c.350]


Смотреть страницы где упоминается термин Теплоты Образования отрицательных ионов. Сродство к электрону: [c.36]    [c.174]    [c.119]    [c.156]    [c.326]   
Смотреть главы в:

Ионы и ионные пары в органических реакциях -> Теплоты Образования отрицательных ионов. Сродство к электрону




ПОИСК





Смотрите так же термины и статьи:

Ионные образование

Ионов образование

Ионы образование

Образование отрицательных ионов

Сродство

Сродство к электрону

Теплота ионов

Теплота образования

Теплота образования ионных пар

отрицательная



© 2025 chem21.info Реклама на сайте