Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания неорганические, значения рКа

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]


    Осаждение алюминия в виде гидроокиси для отделения от других элементов или последуюш,его гравиметрического определения— самый старый и распространенный метод. Значение его как гравиметрического метода сейчас невелико, так как имеются более точные методы, но он часто применяется для предварительного отделения алюминия от мешающих элементов. Гидроокись алюминия начинает осаждаться прн pH несколько больше 4 [61, 591, 755], а по данным работы [9], даже при pH 3,5—4,0. Гиллебрандом и др. [89] приведены pH осаждения гидроокисей большого числа металлов. В дополнение к ним можно привести pH осаждения гидроокисей Ga, 1п и Se, взятые из работы Остроумова [318], составляющие соответственно 3,4, 3,7 и 4,7. Гидроокись алюминия выделяют аммиаком, слабыми органическими основаниями и соединениями, выделяющими при нагревании аммиак, либо при гидролитическом осаждении с помощью солей неорганических кислот. [c.40]

    Многие неорганические соединения достаточно стабильны к нагреванию и могут быть введены в масс-спектрометр. Большинство таких изученных соединений рассмотрено в гл. 10 при описании исследования их скрытой теплоты образования или агрегатного состояния в паровой фазе. Присутствие непредвиденного элемента в образце, подвергнутом идентификации, устанавливается на основании необычных значений масс и массовых разностей между основными пиками в масс-спектре или на основании необычной изотопной распространенности. Например, в том случае, когда наличие изотопов указывает на присутствие кремния, следует вычесть массу атомов кремния из точно измеренной массы ионов, что позволит установить формулу остальной части иона при помощи приложения 1. [c.438]

    В табл. 8.15 представлен ряд значений рКа некоторых неорганических оснований, производных аммиака. Оказывается, что N-метилирование приводит к появлению стерического препятствия при протонизации, как это наблюдалось в о-толуидине (стр. 135), По взглядам Вернера , основания неорганических соединений могут быть также охарактеризованы константами кислотности, если считать, что гидратированные водой ионы металла могут выделять протоны тогда можно охарактеризовать ионизацию КОН следующим уравнением  [c.146]

    При установлении различных корреляций, основанных на значении частот нормальных колебаний и соответствующих силовых постоянных, необходимо учитывать фазовое состояние вещества. Влияние некоторых факторов, приводящее к смещению полос, может в наиболее сильной степени проявляться в низкочастотной области спектра. Для неорганических систем, спектры которых часто приходится получать в твердой фазе, особенно важны эффекты кристаллического состояния. [c.127]


    Методом ТСХ обнаружение неорганических ионов осуществляется просто и быстро. Разделение основано на различии значений Я,. На основании известных значений Rf для каждого иона данной хроматографической системы и характерной окраски зоны под УФ-излучением легко идентифицировать катионы в анализируемом растворе. [c.181]

    Если для органических соединений на основании сопоставления значений Д5, вызванных различными изменениями молекулярной структуры, удалось обнаружить лишь известные закономерности для некоторых классов соединений, то для неорганических веществ, как показал Киреев [322], можно установить некоторые общие закономерности. [c.32]

    В общем случае Кос довольно хорошо коррелирует с растворимостью вещества и коэффициентом распределения октанол-вода Кош характеризующим гидрофобность соединения (рис. 4.8). Поэтому если вклад в адсорбцию почвенной неорганической компоненты незначителен, на основании определения значения Кош можно предсказать количество адсорбированного вещества в почве. [c.268]

    Основанный на представлении о жизненной силе принцип разделения химических соединений на неорганические и органические должен был бы мгновенно рухнуть, если бы в лаборатории при помощи неорганических сил было синтетически получено вещество, образующееся также и в живой клетке. Это удалось сделать Велеру, который в 1824 г. получил из дициана щавелевую кислоту, а в 1828 г, из циановокислого аммония — мочевину последний синтез имел особенно большое значение для дальнейшего развития органической химии. Однако гипотеза [c.2]

    Велико значение теории кислот и оснований для неорганического синтеза. В результате реакций в неводных средах получено колоссальное число новых неорганических соединений многие из них весьма своеобразны и не похожи на вещества, существующие в водных растворах. [c.285]

    В молекулах разных неорганических соединений различие в энергии и характере связей между двумя данными атомами значительно больше, чем в молекулах органических соединений, так как способы насыщения других валентностей атомов могут быть более разнообразными. Поэтому методы расчета, основанные на принципе аддитивности, здесь большей частью неприменимы к тому же точность определений в общем меньше, чем у органических соединений. Данные разных авторов нередко различаются на несколько килокалорий. Однако значения, полученные аналогичными методами для близких между собой веществ, например для разных сочетаний изотопов водорода, обладают достаточно высокой относительной точностью. [c.86]

    В этой книге описаны разные методы расчета термодинамических параметров химических реакций и свойств неорганических и органических веществ 1) методы, основанные на использовании справочных данных, относящихся к рассматриваемым веществам и реакциям 2) методы сравнительного расчета, основанные на использовании экспериментальных данных для других веществ и реакций, которые по своему составу и строению сходны с рассматриваемыми 3) методы, основанные на использовании различных закономерностей в значениях рассматриваемого параметра для разных веществ или реакций. Во всех случаях автор стремился выявить теоретические основы предлагаемых методов расчета, так как только это позволяет судить о пределах их применимости и точности результатов. [c.7]

    Что касается применения полярографического метода для качественных определений, то на основании имеющегося опыта можно сделать вывод, что эта сторона (качественный анализ) является одной из слабых сторон полярографии, по-видимому, как и любого другого физико-химического метода анализа. Основным ограничением для широкого применения полярографии в качественном анализе как органических, так и неорганических веществ является, в первую очередь, узость диапазона значений потенциалов, где происходят процессы, фиксирующиеся с помощью полярографа. Это обстоятельство обусловливает близость значений полуволн различных веществ. Кроме того, на величины потенциалов полуволн значительное влияние оказывает состав фона и некоторые другие факторы, в том числе, например, наличие поверхностно-активных веществ и другие, особенно при необратимом восстановлении исследуемых соединений. [c.60]

    Важнейшее значение для расчетов АН неорганических соединений на основе химического подобия приобрели в настоящее время методы, основанные на непосредственном сопоставлении данных, относящихся к двум рядам сходных соединений. К наиболее ранним наблюдениям в этой области относятся постоянства разностей AHf, 298 для некоторых однотипных соединений элементов, являющихся аналогами по периодической системе. Сюда относится, в частности, наблюдение Б. Ф. Ормонта [c.150]

    Лаблюдаемый в последнее время быстрый научный и техниче- ский прогресс в области химии м химической технологии органических и неорганических веществ вызывает острую необходимость дальнейшего развития аналитической химии и разработки новых более эффективных химических, физических и физико-химических методов анализа, соответствующих современным требованиям науки и производства. Одним из перспективных путей развития аналитической химии является направление, которое связано с разработкой теории и практики методов анализа, основанных па использовании реакций, протекающих в неводных растворах [1—26]. Основное преимущество использования неводных растворителей в качестве сред для определения различных веществ состоит в том, что в среде неводных растворителей можно дифференцированно (раздельно) титровать смеси электролитов, которые в водном растворе характеризуются близкими значениями р/С, например смеои изомеров, смеси соединений одного гомологического ряда, смеси кислот, оснований и т. д. [c.5]


    Наиболее широко МКД используется для исследования неорганических и комплексных соединений, включающих основания нуклеиновых кислот и полинуклеотиды. Так, в электронном спектре металлопорфиринов, имеющих симметрию 04н, наблюдаются две полосы (рис. Х1У.8). Оба возбужденных состояния дважды вырождены. Из кривой МКД видно, что коэффициент А первого перехода во много раз больше второго. Для различных металлов это соотношение составляет в среднем 9 1. Значение В коэффициента существенно зависит от заместителей в кольцах. МКД очень чувствителен к степени окисления железосодержащих порфиринов. [c.260]

    В настоящее время, как никогда ранее, в неорганической химии происходит своеобразный пересмотр основных понятий и теоретических воззрений. Так, на основе учения об электронном строении молекул представление о валентности атома в молекуле постепенно теряет определенность и значение. Если исходить из представления о валентности атома в молекуле как числе химических связей, которыми он связан с другими атомами, то на основании метода валентных связей валентность атома равна числу электронных пар, которыми он совместно с другими атомами обладает. Согласно этим представлениям, в ЫНз и валентность атома азота равна 3 и 4 [c.5]

    Каждая величина, приведенная в табл. 4G, представляет собой среднее значение, основанное на определении длин подобных связей во многих родственных молекулах, за исключением тех случаев, когда связь имеет уникальный характер, как, например, в НС1 величины, указанные в скобках, получены из данных только для одной или двух молекул. Символ R используется в основном для иллюстрации координации (валентности) рассматриваемых атомов и может означать самые различные структурные группы —как органические, так и неорганические. [c.127]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    Критически проанализированы известные данные АН%)ц, 19 И 29s для примерно 1335 бинарных и квазибинарных соединений с использованием предложенных численных методов оценки. Установлено, что для 20—25 % веществ отклонения расчетных значений свойств от известных составляют > 1151 %. Эти результаты согласуются с подобной оценкой, выполненной в [1], и дают основания считать, что только 75—80 % справочной и известной информации о ТХС неорганических соединений достоверны и могут быть использованы для термодинамических исследований. [c.127]

    Многие значения энергий разрыва связей были вычислены на основании принятых в настоящем издании энтальпий образования радикалов (табл. 6 и 5), энтальпий образования атомов (табл. 4), энергий диссоциации двухатомных молекул (табл. 1) и энтальпий образования неорганических веществ, взятых из литературных источников (ссылки приведены в таблице). В большинстве случаев значения энтальпий образования принимались по справочнику Термические константы веществ>> [1, 53, 140, 141, 170, [c.105]

    Поверхностный заряд частицы органического или неорганического вещества можно изменить, добавляя кислоту или основание в зависимости от кислотно-основных свойств поверхностных групп. На рис. 10.9 показано, как частица органического вещества с поверхностными аминогруппами и карбоксильными группами меняет свой заряд при изменении pH. Значение pH, при котором суммарный заряд частицы равен нулю, называют изоэлектрической точкой (или изоионным значением pH). Величина его зависит от силы кислоты и основания, свойства которых проявляют соответственно карбоксильные и аминогруппы. Обычно изоэлектрические точки для органических частиц в сточной воде находятся в диапазоне pH от 3 до 5, т. е. при нейтральном значении pH эти частицы заряжены отрицательно. [c.395]

    Сульфаниловая кислота представляет твердое вещество (т.пл. 228°С). Реагирует с основаниями с образованием солей. Однако она не образует солей с кислотами, так как существует в виде внутренней соли и ее сульфогруппа обладает более кислыми свойствами, чем неорганические кислоты. Из сульфаниловой кислоты и аналогичных ароматических аминосульфокислот производят азокрасители. Кроме то- го, сульфаниловая кислота имеет большое значение как элемент структуры химико-терапевтических средств, известных под названием суль- [c.506]

    На рис. 10.11 показаны возможные изменения заряда неорганической частицы в зависимости от концентрации ионов водорода. Приведенные поверхностные группы могут вести себя и как кислоты, и как основания (т. е. они амфотерны). Поэтому в данном случае, как и для органической частицы, значение изоэлектрической точки полностью зависит от химического состава частицы. [c.396]

    Вторичные и алифатические, и ароматические амины реагируют с азотистой кислотой, давая N-нитpoзoaмины желтого цвета. Эти соединения, амиды азотистой кислоты, являются очень слабыми основаниями. Неорганические нитриты, которые в течение долгого времени иснользовались нри консервировании пищевых продуктов, а также в мясной промышленности, оказались мутагенами. Их действие связано, по-видиыому, с образованием неустойчивых М-нитрозоаминов после того, как азотистая кислота возникает из нитрит-ионов при физиологических значениях pH. [c.222]

    Если же иметь в виду вообще происхождение нефти и ее небольшие, не имеющие практического значения скопления, то нужно признать, что в очень редких случаях и в весьма ограниченных количествах нефть имеет неорганическое происхождение и возникла в результате чрезвычайно небольших выделений-из магмы. Только с этой точки зрения космическая гипотеза и заслуживает того, чтобы о ней упомянуть. Но так как она претендует на универсальность, то понятно, она должна быть признана несостоятельной и фантастической в той же мере, как и карбидная и вулканическая и вообще все так называемые эманационные гипотезы неорганического происхождения нефти, основным недостатком которых является то, что все они построены на догадках п предположениях и теоретических рассуждениях, которые с геологической точки зрения не могут быть доказаны. Поэтому от них отказались не только почти все геологи, но большинство химиков, которым факты неорганического синтеза нефти в лабораторных условиях долгое время мешали оценить значение возражений, которые приводились геологами. В природе они искали аналогий условиям лабораторного опыта п, по моему мнению, до сего времени не нашли. По справедливому замечанию К. Крэга, гипотезы неорганического происхождения нефти представляют собою главным образом догадки хи.миков и кабинетных ученых. Основанные на предположениях и тео1)етических рассуждениях, они ни разу не проверены на практике и не подтверждены геологическими наблюдениями. [c.310]

    Вышло новое справочное издание Сталла, Вестрама и Зинке, посвященное органическим соединениям. В нем приведены данные для углеводородов и большого числа их производных, содержащих галогены, кислород, серу и азот и некоторых простейших неорганических соединений, часто используемых в органических реакциях. Для каждого из веществ приведены значения АЯ/, ДО/, lgKf, Нт — Но,8тш Ср от 298 до 1000 К для состояния идеального газа и для 4000 соединений данные для 298,15 К. Приведены обоснования рекомендуемых значений. Наряду со значениями, основанными на экспериментальных данных, в книге приведены значения, рассчитанные по методу групповых уравнений ( 45) и по методу Соудерса, Мэтьюра и Харда ( 44). Приведена литература. Вышел русский перевод книги. [c.81]

    В книге Теоретическая неорганическая химия , написанной американскими химиками К- Деем и Д. Селбиным, довольно подробно освещены теоретические проблемы неорганической химии, современные пути исследования строения молекул неорганических веществ, в особенности метод молекулярных орбиталей, а также указаны некоторые проблемы химии, которые приобрели важное значение (строение координационных соединений, неводные растворы и сущность понятий кислота и основание ). [c.6]

    Все значения /С приводятся в шкале молярно-массовых концентраций (шкала моляль остей). Таблицы расположены в следующем порядке иеоргаин-ческие кислоть , неорганические основания, органические кислоты, органические основания. Констаиты диссоциации веществ, способных диссоциировать как по типу кислоты, так и по типу основания, приводятся соответственно в двух таблицах. [c.232]

    Многие реакции, которые ускоряются ферментами, могут катализироваться также кислотами или основаниями, а часто и соединениями обоих типов Хорошо изученным примером такого рода является мута-ротация — обратимое взаимное превращение а- и р-аномерных форм сахаров, в частности глюкозы [см. схему (6-75)]. Эта реакция катализируется специфическим ферментом мутаротазой, а также неорганическими кислотами и основаниями. Эти данные показывают, что между простыми кислотами и основаниями, с одной стороны, и ферментами — с другой, есть нечто общее с точки зрения каталитического действия. Поскольку многие боковые цепи аминокислот содержат кислотные и основные группы, мы приходим к вполне естественному заключению, что эти группы должны участвовать в катализе как кислоты и основания. Однако для того чтобы понять, как именно они участвуют в катализе, мы должны иметь представление о численных значениях некоторых констант равновесия и констант скорости. [c.50]

    Основание. Основание необходимо для нейтрализации выделяющейся кислоты, для образования ацетиленида меди и воздействия на его окислительную способность. Гидроокись аммония нашла широкое применение для приготовления ацетиленида меди в реакции Глязера, но она благоприятствует реакции (11). По данным Кадьо и Ходкевича реакция (10) идет с высоким выходом целевого продукта в присутствии первичного алкиламина (1,8 моля алкиламина на моль этинильного соединения хорошие результаты получены с этиламином, н- и изопропиламинсш и н-бутиламином). При использовании в качестве амина пиридина, обладающего очень слабыми основными свойствами, для нейтрализации общей кислотности можно ввести в реакционную смесь неорганические основания но в реакции (8) неорганические основания без амина оказываются неэффективными. Комплексообразующие свойства аминов имеют очень важное значение так, например, этилендиамин, образующий внутрикомплексные [c.270]

    Реакцию чаще всего проводят в воде или в смеси воды и какого-либо органического растворителя спирта, тетрагидрофурана и т. п., что очень удобно, учитывая особенности растворимости моносахаридов. Значение pH 10—10,5 является оптимальным для протекания реакции поскольку боргидриды наиболее устойчивы в слабощелочной среде, а также потому, что гидроксил-ион катализирует превращение циклической полуацетальной формы в ациклическую, которая и подвергается восстановлению. Увеличение pH ведет к ускорению гидролиза боргидрид-иона и к усилению побочных реакций вследствие превращений моносахарида под действием основания (см. стр. 97 и сл.). Уменьшение pH вызывает усиление распада боргидрид-иона с выделением водорода. Восстановление моносахаридов протекает достаточно быстро уже при 20° С и заканчивается, в среднем, через 1—2 ч. Избыточный боргидрнд разрушают добавлением разбавленной соляной или уксусной кислоты борную кислоту удаляют, нагревая кислый раствор с метанолом и отгоняя образующийся метил-борат неорганические соли удаляют обычно с помощью ионообменных смол. Выходы полиолов очень высоки (около 90- о) .  [c.79]

    Одновременное существование в одной молекуле амино-и карбоксильной групп отражается и на поведении аминокислот в тех реакциях, в которых участвует только одна из двух функциональных групп. Аминогруппа, которая в аминах проявляет себя как нуклеофил, в биполярном ионе полностью лишена нуклеофильности из-за протонирования водородным атомом карбоксила поэтому ни реакция алкилирования по Гофману, ни ацилирование, свойственные аминам, не имеют места в случае биполярных ионов аминокислот. Эти реакции могут происходить только при условии предварительного депротонирования аминогруппы, что достигается испатьзовани-ем реакционной среды с высокими значениями pH, при которых цвиттер-ион полностью превращён в карбоксилат-анион для этого аминокислоты обрабатывают эквивалентом органического (реакция А В - амин) или неорганического (реакция Б В - атом металла) основания  [c.44]

    Метод основан на различиях в магнитных свойствах газов. Неорганические газы обладают как диамагнитными (инертные газы), так и парамагнитными (кислород, оксиды азота) свойствами. Наиболее заметными значениями магнитной восприимчивости характеризуются парамагнетики, в ряду которых выделяется кислород. Магнитный метод имеет три основные модификации термомагнитный, магнитомеханический и магнитопневматический. [c.927]

    Помимо реакций осаждения, образования окрашенных соединений, основанных на использовании ОАР, содержащих различные ФАГ и ААГ, в аналитической химии находят применение и другие типы реакций. Например, реагенты, обладающие окислительно-восстановительными свойствами, можно использовать для качественного и количественного определения окислителей и восстановителей. Возможность протекания редокс-реакции между ОАР и неорганическими ионами можно предсказать, располагая значениями стандартных ( ) окислительно-восстановительных потенциалов органического соединения и неорганических ионов или молекул. Если 2еорг> орг, окислению В реакции будет подвергаться органическое соединение, а в случае 2еорг< орг органическое вещество будет восстанавливаться. [c.59]


Смотреть страницы где упоминается термин Основания неорганические, значения рКа: [c.38]    [c.148]    [c.295]    [c.259]    [c.77]    [c.74]    [c.168]    [c.31]    [c.128]    [c.168]   
Константы ионизации кислот и оснований (1964) -- [ c.146 , c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Основания рКа значение



© 2025 chem21.info Реклама на сайте