Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золота галлия

    II алюминия . Экстрагирование эфиром может быть с успехом применено также и для отделения некоторых других элементов, как, например, молибдена, золота, галлия и таллия (П1). [c.162]

    Первоначально в качестве катализатора ароматизации применяли платину на оксиде алюминия как носителе (примерно 0,5% платины). В последние годы промышленность переходит на би- и полиметаллические катализаторы. Например, платино-рениевые катализаторы имеют ряд преимуществ перед платиновыми более длинный срок службы, возможность работы при более низком давлении, получение бензинов с более высоким октановым числом. Еще большей избирательностью обладают платино-рениевые катализаторы с добавками золота. галлия, германия, индия. Переход на платино-ре-ниевые катализаторы позволил снизить давление аро- [c.221]


    Извлечение хлорида железа (III) эфиром из солянокислого раствора является удобным методом отделения больших количеств железа от меньших количеств других элементов, например никеля и алюминия . Экстрагирование эфиром может быть с успехом применено также и для отделения некоторых других элементов, как, например, молибдена, золота, галлия и таллия (III). [c.149]

    Металлическим галлием пользуются для наполнения кварцевых термометров, служащих для измерения высоких температур. Галлий плавится при 29,8 °С, а закипает только при 2205 °С, так что такие термометры позволяют измерять температуры до 1000 °С н выше, что невозможно прн употреблении обычных термометров. Добавлением галлия к алюминию получают сплавы, хорошо поддающиеся горячей обработке сплавы галлия с золотом применяются в ювелирном и зубопротезном деле. [c.639]

    Из хлоридных растворов с большим коэффициентом распределения извлекаются молибден (VI), теллур (IV), уран (VI), цинк индий, железо (III), палладий, золото, ртуть, хуже германий, галлий, цирконий, торий, ванадий (V), кадмий, медь, родий (III), платина (IV), совсем плохо кобальт, никель и др. металлы. [c.40]

    Отделенный от раствора кек составляет около 30% массы огарка [15]. Он содержит иногда еще достаточно большое количество цинка (если при обжиге образовалось много ферритов или остался необожженным сульфид цинка), а также соединения свинца, меди и редких металлов (кадмий, индий, галлий, германий, серебро, золото). Поэтому кек обрабатывают для извлечения полезных компонентов. [c.272]

    Кроме экстрагирования железа в виде хлоридного комплекса, применяется также экстрагирование хлоридных комплексов таллия, мышьяка, галлия и золота, йодидных комплексов сурьмы, висмута и [c.115]

    Итак, метод измерения емкости двойного слоя позволяет определить потенциал нулевого заряда, зависимость заряда электрода от его потенциала, с точностью до константы рассчитать серию а, -кривых и определить поверхностную концентрацию специфически адсорбированных ионов и органических молекул. Разработка и экспериментальная проверка метода измерения емкости проводились на ртутном электроде (А. И. Фрумкин и сотрудники, Д. Грэм). В дальнейшем этот метод был широко использован для изучения двойного электрического слоя на электродах из висмута, свинца, галлия, индия, сурьмы, олова, таллия, цинка, серебра, меди, золота и некоторых других металлов. [c.158]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]


    Некоторые элементы — цинк, кадмий, галлий — дают с амальгамой золота интерметаллические соединения, которые окисляются при более положительных потенциалах, чем чистая амальгама данного металла. Например, на электроде с золотым контактом можно определять индий в присутствии кадмия, так как индий не образует интерметаллического соединения с золотом, а кадмий образует. [c.167]

    Этот же принцип Д. И. Менделеев строго соблюдает и внутри каждой группы при расположении элементов главных подгрупп и переходных металлов. Действительно, наиболее электроположительные металлы располагаются в I группе слева от более электроотрицательных меди, серебра и золота. Во П группе щелочноземельные металлы с ярко выраженными электроположительными свойствами располагаются слева от заметно более электроотрицательных элементов подгруппы цинка. В П1 группе слева Д. И. Менделеев располагает скандий, иттрий и лантан, обладающие типичными металлическими свойствами, а справа — амфотерные, значительно более электроотрицательные элементы подгруппы бора алюминий, галлий, индий и таллий. В IV группе на том же основании подгруппа титана располагается слева от подгруппы углерода. Во всех остальных группах подгруппы переходных металлов находятся слева от неметаллических элементов главных подгрупп. [c.78]

    Жидкий галлий (7 л = 302,78 К) применяется для изготовления термометров, предназначенных для измерения высоких температур сплавы галлия с золотом используются в ювелирном и зубопротезном производстве. [c.476]

    Очень интересно применение галлия для холодной пайки керамических и металлических изделий. Этот способ рекомендуется для присоединения тонких проводов в приборах, где нагревание нежелательно. Для этого жидкий галлий смешивают с порошкообразным металлом — медью, никелем, серебром или золотом в соответствуюш,ей пропорции пасту наносят на места соединения. Через несколько часов в результате затвердевания происходит спайка [1], [c.246]

    К настоящему времени изучено влияние многих элементов на плотность р и свободную поверхностную энергию а жидкого железа. В предлагаемом обзоре для удобства систематизации влияние элементов на р и а железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные нами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. [c.28]

    По литературным данным рассмотрено влияние двадцати трех элементов на ллотность р жидкого железа и тридцати трех — на его свободную поверхностную энергию а. Для удобства систематизации влияние элементов на р и о железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные авторами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. Используя известные критерии поверхностной активности, авторы провели оценку надежности имеющихся литературных и собственных данных. Табл. 2, библиогр. 109. [c.222]

    Электронные структуры меди, серебра и золота, а также цинка, галлия и родственных им элементов приведены в табл. 19.4. [c.557]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Из табл. 18 следует, что концентрация 1 N раствора НВг в водной фазе обеспечивает практически полное экстрагирование даже больших количеств таллия. При повышении концентрации НВг заметно экстрагируются индий, галлий, железо, т. е. количественное отделение таллия не удается. Бромид трехвалентного золота экстрагируется столь же хорошо, как и трехвалентный таллий. [c.77]

    Ионный обмен. По аналогии с отрицательно заряженными хло-рокомплексами железа, золота, галлия и других переходных элементов [7, 54, 146] хлоридный комплекс астатина сильно сорбируется на катионитах типа дауэкс-50 и КУ-2 из насыщенных хлором растворов НС1 и хлоридов щелочЯых металлов (рис. 107) [4, 23]. Максимальное поглощение астатина наблюдается в интервале концентраций хлорид-иона 5—8Л1. При понижении концентрации ионов СГ наблюдается резкое уменьшение коэффициента распределения, что, по-видимому, обусловлено распадом хлорокомплекса астатина. [c.248]

    Для определения галлпя в сплаве золото — галлий по разработаппо] методике необходимо всего 3 мг пробы, которую растворяют в 2 мл царской водки , выпаривают досу.ха и разбавляют дистиллированной водой [c.48]

    Атомно-абсорбционное определения галлия в сплаве золото—галлий. Резчи-к о в в. Г,, У с в а т о в В, Р у д и е в с к и й П. К. [c.108]

    Вместе с ZnO и РЬО летят dO, AS2O3, ЗЬгОз, 1П2О3, ОагОз, ОеОг, Na l и др. Медь восстанавливается и вместе с соединениями железа и кремнеземом входит в состав клинкера. В клинкер попадают также золото и серебро. Окислы металлов в виде пыли уносятся вместе с газами из печи и проходят через систему газоходов и холодильников. Основная часть пыли улавливается мешочными фильтрами, изготовленными из бязи, шерстяной ткани или ткани из синтетического волокна.. Температура газов, поступающих в фильтры, 1не должна превышать 110° С и быть ниже 90° С. В газах, отходящих из печей, концентрация СО не должна превышать 1%, а кислорода—8%. В уловителях осаждаются окислы следующего состава, % 55—60 Zn, 1-2—15 РЬ, 0,4—0,5 d, 0,07 l, 0,2—0,6 As и Sb, кроме того, в них содержатся индий, галлий, таллий. Окислы поступают на растворение, а клинкер после обогащения отправляют для переработки на медеплавильные заводы. [c.431]


    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    Взаимодействие графита с большинством металлов и некоторыми металлоидами при соответствующих температурах приводит к образованию карбидов. Не образуют карбидов цинк, кадмий, ртуть, галлий, индий, таллий, олово, свинец и висмут. Медь, серебро и золото образукзт нестойкие карбиды, разлагающиеся со взрывом. Большинство конструкционных материалов на основе металлов взаимодействует с графитом, образуя карбиДы стехнометрического состава, или науглероживаются с образованием нестабильных карбидов, распадающихся при температурах ниже температуры образования карбида. Образование карбидов, как правило, сопровождается увеличением прочности и твердости материалов. Многие металлы начинают взаимодействовать с углеродом значительно ниже температуры их плавления. [c.127]

    Из таблицы ВИДНО, что медь имеет один внешний электрон на 4 -орбитали Я-оболочки, цинк имеет два внешних электрона на 45-орбитали и галлий имеет три внешних электрона — два на 4 5-орбитали и один на 4 р-орбитали. Родственные им элементы также имеют один, два или три электрона на внешней оболочке. Оболочка, предшествующая внешней, во всех случаях содержит 18 электронов для меди, цинка и галлия это М-О болочка, для серебра, кадмия и индия — А/ -оболочка, для золота, ртути и таллия — 0-оболочка. Эти оболочки называют восемнадцатиэлектронными оболочками. [c.557]

    Электроны, находящиеся во внешней оболочке, удерживаются слабо и легко могут быть удалены. Ионы, образующиеся в результате такого удаления электронов (Си+, 2п +, Оа + и т. д.), имеют внешнюю оболочку из восемнадцати электронов и называются ионами с восемнадцатиэлектронной оболочкой. Если эти элементы теряют свои внешние электроны, образуя ионы с восемнадцатиэлектронной оболочкой, или делят внешние электроны с другими атомами, то степень окисления для меди, серебра и золота будет - -1, для цинка, кадмия и ртути +2, для галлия, индия и таллия -+-3. [c.557]

    В кач-ве индикаторных микроэлектродов используют стационарные и вращающиеся-из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия Последние представляют собой капилляры, из к-рых по каплям вытекает жидкий металл. В. с использованием капающих электродов, потешщал к-рых меняется медленно и линейно, наз. полярографией (метод предложен Я. Гейровским в 1922). Электродами сравнения служат обычно электроды второго рода, напр, каломельный или хлоросеребряный (см. Электроды сравнения). Кривые зависимости I = f(E) или 1 =/(U) (вольтамперограммы) регистрируют спец. приборами-полярографами разных конструкций. [c.416]

    Отдельные тома серии Аналитическая химия элементов будут выходить са, юстоятельно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, никелю, редкоземельным элементам и иттрию, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, алюминию, селену и теллуру. Готовятся к печати монографии по аналитической химии нептуния, кремния, германия, радия, золота и др. [c.4]

    Предварительное концентрирование металла в объем ртутного микроэлектрода обычно проводят при потенциале предельного тока восстановления исследуемого иона. Этим путем можно получить амальгамы металлов I и II групп периодической системы, редкоземельных элементов, а также таллия, индия, галлия, цинка, кадмия, свинца, висмута, алюминия, меди, серебра и золота (рис. 11.1). Однако щелочные металлы имеют столь отрицательные потенциалы восстановления, что их концентрирование из водных растворов практически невозможно. Как правило, эти металлы определяют в органических средах, например, в диметилформамиде на фоне четвертичных аммониевых солей. То же в значительной степени относится и к щелочноземельным металлам. Кроме того, из-за близости потенциалов окисления металлов I и II групп нельзя ожидать высокой селективности при огфеделении данных ионов. Поэтому метод ИВА практически не применяется для определения щелочных и щелочноземельных металлов. [c.417]

    Азот. . Алюминий Ар гои. . Барий. . Бериллий Бор. . Бром. . Ванадий. Висмут. Водород. Вольфрам Гадолиний Галлий. Гафни11. Гелий. . Германий Гольмий Диспрозий Евроний Железо Золото Индий Иод. . Иридий Иттербий Иттрий Кадми11 Калий. Кальций Кислород Кобальт. Кремний Криптон Ксенон. Лантан. Литий Лютеций Магний. Марганец Медь. . Молибден Мышьяк 11атрий.  [c.14]

    Диантипирилпропилметан — белое кристаллическое вещество пл = 155-ь156°С. Растворим в этаноле, метаноле, и-бутаноле, ацетоне, хлороформе, дихлорэтане, толуоле, уксусной кислоте, диметилформамиде, водных растворах кислот (НС1, H2SO4). Мало растворим в воде. Является двухкислотным основанием в уксусной кислоте, однокислотным — в ацетоне. Очищают перекристаллизацией из этанола или метанола. Реактив устойчив, способен храниться годами не разрушается кислотами и щелочами. Применяют для фотометрического определения теллура, галлия,таллия и золота. [c.135]


Смотреть страницы где упоминается термин Золота галлия: [c.257]    [c.217]    [c.89]    [c.125]    [c.40]    [c.229]    [c.133]    [c.90]    [c.37]    [c.76]    [c.322]    [c.8]    [c.226]   
Аналитическая химия мышьяка (1976) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2025 chem21.info Реклама на сайте