Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод подгруппа

    К р-элементам четвертой группы относятся углерод, кремний, германий, олово и свинец. Типические р-эле-менты 4 группы углерод и кремний — неметаллы. Германий, олово и свинец объединяют в подгруппу германия в виду большого сходства их свойств. У германия преобладают неметаллические свойства и ему присущи полупроводниковые свойства. [c.75]

    К четвертой группе относятся типические элементы (углерод, кремний), элементы подгруппы германия (германий, олово, свинец) и элементы подгруппы титана (титан, цирконий, гафний, курчатовий). [c.446]


    Б главных подгруппах устойчивость соединений, в которых элемент проявляет высшую степень окисленности, с увеличением порядкового номера элемента, как правило, уменьшается. Так, соединения, в которых степень окисленности углерода или кремния равна +4, вполне устойчивы, тогда как аналогичные соединения свипца (например, РЬОг) мало устойчивы и легко восстанавливаются. В побочных подгруппах проявляется обратная закономерность с возрастанием порядкового номера элемента устойчивость высших окислительных состояний повышается. Так, соединения хрома (VI)—сильные окислители, а для соединений молибдена (VI) и вольфрама(VI) окислительные свойства ие характерны. [c.648]

    Оксиды фосфора и кремния существуют в полимерном состоянии, а оксиды азота и углерода не обладают такой особенностью. Почему Как изменяется способность к полимеризации при переходе вниз по подгруппе  [c.153]

    Замечательнейшая способность твердого вещества сохранять форму обусловлена тем, что его структура существует в довольно широком диапазоне изменений температуры и других условий, пока не разрываются связи между структурными единицами. Если это межатомные связи, то структура твердого вещества может обладать высокой устойчивостью. Именно благодаря исключительной прочности и жесткой направленности связей С — С, С — N, В — N, Р — N, Si — О, Si — О — А1, Fe — Fe, Ni — Сг, образованных sp-оболочками атомов элементов главных подгрупп И1—VI групп и d-оболочками атомов переходных элементов, мы имеем целый арсенал превосходных материалов. Связь С — С среди других межатомных связей выделяется так же ярко, как алмаз среди других твердых веществ. Благодаря ее прочности мы можем получать особо легкие жесткие материалы, обладающие в высшей степени ажурной структурой, химически стойкие и жаропрочные, каталитически активные и, наконец, биологически совместимые. На основе углерода природой созданы различные биоматериалы — прочнейшие живые ткани, например, кожа, шерсть, паутина активнейшие реагенты — ферменты, гормоны целые органы и сами организмы. [c.8]

    Иначе говоря, галогены являются окислителями. Они соединяются с очень многими химическими элементами, образуя галогениды. Галогены реагируют с подавляющим большинством металлов и неметаллов непосредственно, за исключением кислорода, углерода, азота и благородных газов. Фтор реагирует даже с ксеноном. Связи галогенов с металлами главных подгрупп I и II групп носят преимущественно ионный характер, с остальными — в основном ковалентный. [c.102]


    Третья группа подразделяется на две подгруппы (А и Б). Подгруппа А включает аммиак и окись углерода, подгруппа Б — хлор, двуокись серы, сероводород, фосген и бромметил. Четвертая группа также подразделяется на две подгруппы (А и Б). Подгруппа А включает нитро- и аминосоединения ароматического ряда и синильную кислоту подгруппа Б — нитрил акриловой кислоты, никотин, анабазин, октаметил, тиофос, метафос, сероуглерод, тетраэтилсвинец, хлорную смесь (смесь сероуглерода с четыреххлористым углеродом), дифосген, дихлорэтан, хлорпикрин. В пятую группу входят следующие дымящие кислоты серная (плотностью 1,87 и более), азотная (плотностью 1,4 и более), соляная-(плотностью 1,15 и более), хлорсульфоновая и плавиковая, а также хлорангидриды серной, сернистой и пиросернистой кислот. [c.63]

    Некоторые закономерности изменения свойств элементов в подгруппе IVA. Различие свонств элемеитов в подгруппе IVA по сравнению с подгруппой И1А больше. Разница в свойствах между алюминием и таллием значительно меньше, чем между соседними с ними (по периодам) элементами подгруппы IVA — кремнием и свинцом. Однако имеются и черты сходства между всеми элементами подгруппы углерода. [c.387]

    Элементы четвертой главной подгруппы (подгруппа углерода) [c.150]

    Первая попытка химической классификации нефтей была сделана в 1907 г. Гефером. С того момента и до середины бО-х годов были предложены у нас в стране и за рубежом различные классификации, недостаток которых состоял в том, что они рассматривали нефти лишь с точки зрения их углеводородного состава, в то время как химическая классификация должна учитывать и состав неуглеводородных компонентов. Так как этот состав для нефтей изучен еще недостаточно полно, обычно в качестве параметров современные классификации используют значения содержания серы и смолисто-асфальтеновых веществ. Так, за основу классификации нефтей Карнатика , разработанной в 1962 г. [22], принят структурно-групповой состав нефти. В зависимости от числа атомов углерода, приходящегося на алифатические радикалы, нафтеновые и ароматические циклы в усредненной молекуле, нефти разделены на семь групп, а по содержанию серы, смол и асфальтенов, твердого парафина, легких фракций — на 12 подгрупп. [c.10]

    Сопоставление температур плавления и кипения углерода и его аналогов показывает, что они изменяются противоположным образом по сравнению с температурами плавления и кипения элементов главных подгрупп VII, VI и V групп периодической системы. Забегая вперед, можно отметить, что в главных подгруппах III, II и I групп так же, как и в подгруппе углерода, температуры плавления закономерно уменьшаются при переходе от легких аналогов к тяжелым. Не следует, однако, делать поспешного вывода о том, что у элементов I—IV групп металлические свойства ослабевают сверху вниз. Последовательное нарастание металлических свойств при переходе от легких элементов к тяжелым остается непреложным правилом для всех элементов главных подгрупп периодической системы Д. И. Менделеева. Падение температур плавления и кипения при переходе от углерода к свинцу отражает закономерное ослабление межатомных связей в кристаллических решетках простых веш,еств по мере уменьшения степени ковалентности связи и увеличения размеров атомов. [c.94]

    Уксусная кислота может быть также получена карбонили-рованием метанола оксидом углерода в присутствии катализатора. Наиболее широко применяются катализаторы, состоящие из двух компонентов металлов подгруппы железа — Ре, Со, N1, способных к образованию карбонильных соединений, а также ВРз или же Н3РО4. [c.273]

    В регенераторах установок первой подгруппы на сжигание 1 кг кокса расходуется 15—20 кг воздуха. На расход воздуха влияют ве только содержание водорода в коксе и полнота окисления углерода, но и режим процесса регенерации и конструкция аппарата. [c.119]

    Сколько было споров и предложений по поводу размещения водорода в таблице, да и сегодня еще нет единого мнения на этот счет. А все объясняется отсутствием четких критериев "связки всех элементов в единое целое — систему. Нет возможности (да и смысла) анализировать все попытки определиться, наконец, с местом водорода в системе. Остановлюсь только на одном, особо характерном примере. 3. Р. Каика-цишвили [15] пишет Химия водорода не только многообразна, но и своеобразна. Свойства его настолько индивидуальны, что химики до сих пор не могут окончательно договориться о месте водорода в таблице Менделеева. И в научной, и в учебной литературе еще несколько лет назад печатались менделеевские таблицы с водородом, расположенным в 1-й группе и в VII — в скобках. Это отражало двойственность химического поведения элемента № 1. С одной стороны, налицо сходство водорода с самыми типичными щелочными металлами, а с другой — есть у него сходство и с самыми типичными неметаллами — галогенами. Существует также мнение о сходстве водорода с элементами подгруппы бора и углерода. Четыре точки зрения очень далеки одна от другой , — заканчивает в недоумении автор статьи. [c.171]


    Для интерметаллических карбидов характерны высокие температуры плавления (от 3000 до 4200 °С), большая твердость (9—10 по шкале Мооса) и металлический тип проводимости. Электронная структура и другие характерные свойства металлов в основном сохраняются при внедрении атомов углерода в кристаллическую решетку. Атомы металлов, образующие интерметаллические соединения, имеют радиус 0,13 нм. Это — более тяжелые элементы побочных подгрупп четвёртой, пятой и шестой групп. Здесь Следует назвать ТаС (4150 °С),, 2гС (3800°С), и в особенности смешанный карбид 4ТаС + 2гС с самой высокой известной в настоящее время температурой плавления (4215°С). [c.556]

    Карбиды элементов подгруппы ИА получают при. высокотемпературном взаимодействии (электропечь) ЭО с углеродом, например  [c.318]

    В этом указателе суммарные формулы органических соединений расположены по группам (арабская цифра) в зависимости от числа атомов углерода и в каждой группе — по-подгруппам (римская цифра) в зависимости от числа других элементов, входящих в формулу. Например, соединения с суммарными формулами С.Н.ОгСЬ № 1220) или ,HjN2S (К 2581) следует искать под общим групповым знаком 4 1П, так как в обеих формулах имеются 4 атома углерода и 3 других элемента. Элементы в суммарных формулах размещены в следующем порядке С, Н, О. N, S, F, С1, Вг, J, затем все другие — в алфавитном порядке символов. Суммарные формулы в подгруппах расположены одна за другой в той же последовательности элементов и. кроме того, в порядке возрастания числа атомов каждого элемента. Рядом с формулой приведен номер или несколько номеров соединений, помещенных в таблице и соответствующих данной суммарной формуле. [c.887]

    ПОДГРУППА IVA (УГЛЕРОД, КРЕМНИЙ, ГЕРМАНИЙ, [c.351]

    Оксиды несходных металлов подгруппы железа и хрома. В состав катализаторов дегидрирования, гидрообессеривания, риформинга и ряда других входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в окислительно-восстано-вительных реакциях [93]. Поэтому естественно, что уже в ранних работах, посвященных изучению закономерностей окислительной регенерации катализаторов, содержащих переходные металлы, наблюдали более высокие скорости окисления кокса по сравнению с Таковыми для некаталитического окисления углерода [3, 75]. Однако только в цикле работ сотрудников Института катализа СО АН СССР детально изучены закономерности каталитического окисления кокса на оксидах чистых переходных металлов, а также промотированных щелочными металлами [104-108]. [c.40]

    На примере водородных соединений элементов подгруппы углерода видно, что углерод обладает специфической особенностью среди всех других элементов, включая его аналоги атомы его способны при соединении друг с другом образовывать устойчивые цепи..  [c.98]

    ПОДГРУППА УГЛЕРОДА 67. ОБЩИЕ СВЕДЕНИЯ [c.129]

    Подгруппа углерода. Подгруппу углерода составляют элементы углерод, кремний, германий, олово и свинец (см. периодическуй) систему элементов Д. И. Менделеева). Атомы этих элементов на внешнем уровне содержат по 4 электрона, чем объясняется сходство их химических свойств. В соединениях эти элементы проявляют степень окисления, равную +4 и —4, так как их атомы могут отдавать и принимать по четыре электрона. Они проявляют также степень окисления, равную +2, причем последняя с увеличением заряда ядра становится более характерной. [c.254]

    Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду С — 51—Ое — 5п — РЬ проявляется общая тенденция увеличения радиуса атома (см. рис. 15, 16). Однако это увеличение имеет немонотонный характер. При переходе от 51 к Ое внешние р-электроны проникают через экран из десяти З -электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6р-орбитали РЬ по сравнению с 5р-орбиталью 5п обусловлено проникновением бр-электронов под двойной экран десяти -электронов и четырнадцати 4/-электронов. Этим же объясняется немонотонность в изменении энергии ионизаций атомов в ряду С — РЬ и большее значение ее для РЬ по сравнению с атомом 5п (см. рис. 12). [c.37]

    Главная подгруппа IV группы периодической системы химических элементов Д. М. Менделеева содержит углерод С, кремний 81, германий 6е, олово 8п и свинец РЬ. Внешний электмнный слой этих элементов содержит 4 электрона (конфигурация з р ). С увеличением атомного номера свойства элементов закономерно изменяются. Так, углерод и кремний — типичные неметаллы, олово и свинец — металлы. [c.129]

    Сопоставьте электронные конфигурации атомов углерода, кремния и элементов подгруппы германия. Объясните закономерное изменение в группе металлических, кислотно-основных и окислительно-восстановительных свойств. [c.136]

    Элементарные вещества по их отногнению к титану разделяют на четыре группы Г) галогены и халькогены, образующие с титаном соединения ковалентного или ионного характера, нерастворимые или ограниченно растворимые в титане 2) водород, бериллий, эле 1ентарные вещества подгрупп бора, углерода, азота и большинство металлов В-подгрупп, образующие с титаном соединения интерметаллидного характера и ограниченные твердые растворы 3) налоги и ближайшие соседи титана по 1ер Юдической системе, образующие с титаном непрерывные ряды твердых растворов 4) благородные газы, щелочные, ще.лоч го-земельные и редкоземельные (кроме скандия) металлы, не образующие с титаном ни соединении, ни твердых растворов. [c.262]

    Все рассматриваемые элементы образуют диоксиды ЭОг. У углерода и кремния оксид этого типа имеет кислотный характер. У элементов подгруппы германия ЭОг амфотерен. с преобладанием кислотных свойств. Наиболее устойчивы соли типа Кй[Э(ОН)б]. [c.75]

    Главную подгруппу четвертой группы периодической системы )бразуют пять элементов — углерод, кремний, германий, олово и винец. [c.431]

    Физические и химические свойства элементов подгруппы углерода [c.94]

    Э = С1, Вг, I). Пример такого рода сравнеиия приведен па рис. 1.22, где сравниваются значения средних энерппт связей эл ементов главной подгруппы шестой группы с углеродом и кремнием. Графической экстраполяцией можно оценить неизвестное значение с-те 552 кДж/моль. [c.60]

    Углерод, получаемый на катализаторе в виде питей, образуется на металлах подгруппы железа при 900—1000 °С [И]. Технологические возможности производства и практического использования пироуглёрода, а тем более углеродных питей, пе выяснены. В настоящее время созданию различных форм углерода, особенно углеродных волокон, уделяется большое внимание. Углеродные волокна получают пиролизом волокон полимеров. Они отличаются высокой прочностью, малой теплопроводностью и используются для тепловой защиты спутников, в производстве высокопрочных армированных пластических масс и для других целей. [c.179]

    Атомы элементов главной подгруппы IV группы содержат во внешней электронной оболочке четыре электрона. Тенденция к отдаче электронов у свободных атомов углерода и его аналогов ныражена слабее, чем у соседей слева по периоду, а тенденция к приему электронов — слабее, чем у соседей справа. Вместе с тем обе эти тенденции выражены приблизительно в равной степени. Поэтому, если можно говорить о том, что атомам галогенов, кислорода или азота присущи электроотрицательные свойства, а атоллам щелочных и щелочноземельных ме- [c.92]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    Занимая промежуточное положение между типичными металлами и типичными неметаллами, элемент подгруппы углерода проявляют большое разнообразие в свойствах и образуют значительное число различных соединений. В соединениях с галогенами, кислородом, серой, азотом углерод и его аналоги выступают в роли восстановителей, т. е. проявляется их металлическая природа С + 2С1г = ССЦ 51 + Оз = 5102 Ое + 25 = = СеБз 2С + О2 = 2С0 35п + N3 = [c.96]

    Углеводороды подразделяются на группы в зависимости от соотношения, в котором углерод и водород содержатся в их молекуле. Углеводороды, наиболее богатые водородом, называются насыщенными в них достигнута высшая степень насыщения водородом. Все другие углеводороды, более бедные водородом, называются ненасыщен-н ы м и. В свою очередь, ненасыщенные углеводороды подразделяются на различные подгруппы в зависимости от отпошеиия содержания в них углерода к содерлсанию водорода. [c.25]


Смотреть страницы где упоминается термин Углерод подгруппа: [c.114]    [c.390]    [c.306]    [c.379]    [c.388]    [c.139]    [c.356]    [c.1154]    [c.93]    [c.95]    [c.36]    [c.183]    [c.59]    [c.97]   
Пособие по химии для поступающих в вузы 1972 (1972) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

ГЛАВА СУЛЬФИДЫ ЭЛЕМЕНТОВ ПОДГРУППЫ УГЛЕРОДА

Группа углерода (главная подгруппа IV группы)

Обзор соединений элементов подгруппы углерод — свинец

Обзор элементов подгруппы углерода

Общая характеристика подгруппы углерода

Общий обзор элементов подгруппы углерода

Подгруппа IVA (углерод, кремний, германий, олово, свинец)

Подгруппа углерода (С, . 79. Подгруппа азота

Подгруппа углерода и кремния

Подгруппы бора, углерода, азота, кислорода, фтора и инертных газов

Системы гафний — металлы подгруппы хрома — углерод

Углерод, кремний и металлы главной подгруппы IV группы

Углерод, кремний, олово, свинец и элементы подгруппы титана

Элементы IVA-подгруппы углерод, кремний, германий, олово, свиней Общие свойства углерода, кремния и других элементов IVA-подгруппы

Элементы главной подгруппы (подгруппы углерода)

Элементы главной подгруппы IV группы периодической системы углерод, кремний, германий, олово, свинец

Элементы подгруппы углерода



© 2025 chem21.info Реклама на сайте