Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение полимеров механизм

    Механизм разрушения полимеров. Теория Гриффита [c.196]

    Механизм разрушения полимерных материалов, несмотря на наличие ряда общих признаков с другими материалами, имеет много особенностей. В литературе приводятся классификации различных типов разрушений полимеров по признаку происходящих при разрушении деформаций. При этом указывается, что разрушение по- [c.109]


    Взаимосвязь термодинамического и кинетического подходов и диаграмма механизмов разрушения полимера......... [c.7]

Таблица 11.2. Классификация механизмов разрушения полимеров в различных Таблица 11.2. Классификация <a href="/info/320948">механизмов разрушения полимеров</a> в различных
Рис. 11.11. Диаграмма механизмов разрушения полимера Рис. 11.11. <a href="/info/1691404">Диаграмма механизмов</a> разрушения полимера
    Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала. [c.287]

    В различных физических и структурных состояниях процессы разрушения полимеров характеризуются различными особенностями, причем по мере перехода от низкотемпературных областей к высокотемпературным роль молекулярной подвижности и теплового движения в процессах разрушения приобретает все большее значение. В табл. 11.2 приведена классификация различных процессов разрушения на примере главным образом некристаллических полимеров. Некоторые черты этих механизмов наблюда- [c.287]

    В предыдущих параграфах были подробно изложены более илп менее устоявшиеся подходы к изучению аморфных и кристаллических ориентированных полимеров в частности, были затронуты проблемы структурной механики, касающиеся механизмов разрушения полимеров в ориентированном состоянии. Однако исследования в этой области продолжают интенсивно развиваться, и новые экспериментальные данные заставляют изменить некоторые точки зрения. Поэтому представляется целесообразным дать краткий очерк состояния физики ориентированных полимеров к середине 1975 г. с указанием основных теоретических идей и практических тенденций. [c.216]


    ВЗАИМОСВЯЗЬ ТЕРМОДИНАМИЧЕСКОГО и КИНЕТИЧЕСКОГО ПОДХОДОВ И ДИАГРАММА МЕХАНИЗМОВ РАЗРУШЕНИЯ ПОЛИМЕРА [c.312]

    В области нехрупкого разрушения полимеров между температурами Тхр и Тс (см. рис. 11.4) рассеяние упругой энергии при росте трещин из-за различных локальных деформационных процессов становится существенным и термофлуктуационный механизм переходит в термофлуктуационно-релаксационный (см. табл. 11.2). Кроме того, механические потери оказывают существенное влияние на динамическую прочность полимеров при циклических нагружениях. Вызываемый ими локальный разогрев в местах перенапряжений ускоряет рост трещин и снижает долговечность и прочность. [c.314]

    Разрушение полимеров в области высоких температур ф Механика разрушения эластомеров ф Механизм прочности и разрушения эластомеров ф Уравнение долговечности эластомеров ф Разрывное напряжение эластомеров [c.333]

    Масс-спектрометрия широко применяется при исследовании механизма и кинетики химических превращений в полимерах. Высокая чувствительность метода, быстрота анализа (сотни анализов в секунду), возможность наблюдения за отдельным веществом в смеси обусловили возможность исследования самых начальных стадий разрушения полимеров в процессах термической, фотохимической, механической деструкции. Одновременное изучение состава и кинетики образования летучих продуктов в этом сл) ае позволяет получить данные, характеризующие взаимодействие полимеров с излучениями. Здесь с масс-спектрометрией не может конкурировать ни один другой физический метод. [c.144]

    Степенная зависимость Тд от а вместо экспоненциальной для твердых полимеров свидетельствует о специфике механизма разрушения полимеров Б высокоэластическом состоянии. В табл. 11.2 этот механизм (механизм V) назван вязкоупругим. [c.338]

    Итак, термостабильность полимеров является одной из важнейших характеристик их эксплуатационной пригодности. Распад полимеров под тепловым воздействием приводит к резкому падению их физико-механических свойств, выделению низкомолекулярных продуктов, зачастую токсичных и пожароопасных. Знание механизма термического разрушения полимеров позволяет выбрать пути их стабилизации, а значит, и продления срока жизни изделий из полимеров. Преобладающим процессом является термическая деструкция полимеров, протекающая в зависимости от химической природы полимеров по механизму случайного разрыва макромолекул или деполимеризации. Повышение термостабильности полимеров связано с методами торможения этих реакций или синтеза более термостойких полимерных структур. [c.241]

    Механизм разрушения полимеров 227 [c.227]

    МЕХАНИЗМ РАЗРУШЕНИЯ ПОЛИМЕРОВ. [c.227]

    При проведении флеш-пиролиза температуру полимера повышают очень быстро, и за несколько секунд или даже быстрее она достигает относительно высокого значения - в 500 °С и выше при этом в полимере происходит распад и фрагментация макромолекул. Состав продуктов распада обычно анализируют хроматографическим или масс-спектрометрическим методами. Флеш-пиролиз наиболее эффективен для быстрой идентификации материалов, характеристики которых предварительно установлены, а также в тех случаях, когда необходимо различить полимеры сходной структуры он позволяет также получить ценную информацию о механизме термической деструкции. Однако его использование напоминает ситуацию, когда для того чтобы разбить орех, берутся за кувалду. Данный метод в большинстве случаев не позволяет установить точный механизм инициирования в начальных стадиях разложения, что очень важно для понимания процессов старения и разрушения полимеров. Так же, как для колки орехов, гораздо целесообразнее применять специальные инструменты, так и при изучении термодеструкции макромолекул стадийное проведение процесса в более мягких условиях позволяет получать значительно больше информации. [c.403]

    Механизм разрушения полимеров 229 [c.229]

    Механизмы разрушения полимеров в электрическом поле, т е. механизмы пробоя, различны для разных полимеров Различают электронный пробой, тепловой и пробой вследствие газовых разрядов [c.378]

    В качестве полупроводников могут быть использованы диэлектрики, наполненные токопроводящими наполнителями ме-d 1ЛИЧССКИМН порошками, графитом, техническим углеродом В качестве металлических наполнителей используют серебро, никель и другие металлы, не подвергающиеся окислению и не вызывающие химического разрушения полимеров Механизм электропроводимости наполненных систем (полупроводников и диэлектриков) более близок к туннельному, хотя не исключается возможность эмиссии электронов от частицы к частице. Туннельное сопротивление определяется толщиной прослойки полимера, которая зависит от содержания и размера частиц, их распределения и других факторов С уменьшением толщины прослойки сопротивление снижается. Его значение зависит также от диэлектрической проницаемости полимера, разделяющего частицы прн уменьшении проницаемости оно снижается В об- ia TH слабых полей сопротивление практически не завнсит от напряження, а при высоких значениях напряжения сопротипле-ние уменьшается [c.386]


    Масс-спектроскопия широко применяется при исследовании механизма и кинетики химических превращений в полимерах (скорость образования летучих продуктов определяют по высоте соответствующих пиков в масс-спектре), самых начальных стадий разрушения полимеров в процессах термической, фотохимической и механической деструкции. [c.29]

    Соответствие приведенных выше численных расчетов с экспериментальными данными на примере ПММА свидетельствует о правильности сделанного предположения о релаксационной природе перехода от низкотемпературного (термофлюктуационного) к высокотемпературному (термофлюктуационно-релаксационному) механизму разрушения полимера. Механизм разрушения полимера в нехрупкой высокотемпературной области реализуется в результате перехода от группового разрыва химических связей к индивидуальному термофлюктуационному разрыву отдельных полимерных цепей. [c.105]

    При достаточно низкой температуре или больших скоростях разрушения термофлуктуационный механизм не реализуется и разрушение происходит по атермичесрюму механизму. Чем выше температура, тем интенсивнее проявляется термофлуктуационная природа прочности полимеров. При температурах выше температуры стеклования существенное влияние на процесс разрушения начинают проявлять релаксационные свойства (см. табл. 11.2). Так, в высокоэластическом состоянии ведущим процессом в разрушении является не термофлуктуационный разрыв химических связей, а преодоление межмолекулярных сил и процессы рела сации. Это явление подробно рассматривается в следующей главе. [c.331]

    Термофлуктуац. представления былн подтверждены прямым наблюдением за развитием разрушения в аморфно-кристаллич. ориентированных полимерах на всех уровнях структурной организации. Так, с помощью спектральных методов (ИК, ЭПР, масс-спектрометрия и др.), малоуглового рентгеновского рассеяния и др. бьшо установлено, что в полимерных образцах под нагрузкой распределение напряжений на межатомных связях неоднородно, появляются и накапливаются разорванные связи, концентрируются точечные (молекулярные) дефекты, накапливаются субмнкротрещины размером порядка 10 нм. Сравнение скоростей накопления мол. дефектов и образования субмикротрещин привело к выводу о том, что первичные разрывы молекул служат как бы спусковым крючком для передачи цепи радикальной р-ции на соседние молекулы, т. е. можно говорить о взрывном механизме субмикроразрушения образца. Микрокиносъемка процессов образования н роста микро- и макротрещин подтверждает, что указанные микропроцессы лежат в основе макроскопич. разрушения полимера и определяют его закономерности. [c.130]

    Разрушенне полимеров в высокоэластическом состоянии. Полимер находится в высокоэластическом состоянии при 7>7 с н в этих условиях высокоэластическая деформация на чикает развиваться практически сразу с нача.па деформирования, поэтому разрушению предшествуют значительные высокоэластические деформации, имеющие релаксационный характер Механизм, разрушения полимеров в высокоэластичсском состоянии называют вязколокальиым . Ои реализуется при 7 >7 >7 с, где Гп<7 т (Тг-—температура, при которой появляются локальные области вязкого течения). [c.331]

    Системы доставки могут высвобождать лекарственные вещества путем разньтх механизмов диффузии — резервуарньте и матричные, выполненные из стабильньтх и деградирующих полимеров химического разрушения полимера по осмотическому механизму с магнитным и ультразвуковым регулированием высвобождения, а татсже с управлением микрокомпьютерами. [c.292]

    Химия полимеров включает комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и превращениях, а также о свойствах тел, построенных из макромолекул. Для современного этапа развития химии полимеров характерно углуЬленное изучение механизмов превращений не только при синтезе высокомолекулярных соединений, т. е. собственно процессов аолимеризации, но и процессов деградации, разрушения полимеров. Последнее также ван<но по двум причинам. Во-первых, зная механизм и особенности протекания процессов деградации полимеров, можно найти пути торможения этих превращений, когда они нежелательны, чтобы продлить жизнь конструкционным элементам и полезным изделиям из полимеров, защитить их от преждевременного разрушения. Например, можно ввести в их структуру специальные ингибиторы старения. Во-вторых, когда, наоборот, разрушение полимеров желательно. Ведь по мере насыщения окружения человека полимерами все более остро встает вопрос в как оградить от них окружающую среду Было бы неплохо, мгобы выброшенные полиэтиленовые пакеты, бытовые предметы как можно быстрее разлагались, превращаясь в безобидные для природы вещества. [c.32]


Библиография для Разрушение полимеров механизм: [c.631]    [c.213]    [c.417]    [c.185]    [c.323]   
Смотреть страницы где упоминается термин Разрушение полимеров механизм: [c.142]    [c.289]    [c.294]    [c.297]    [c.187]    [c.324]    [c.346]    [c.32]   
Физикохимия полимеров (1968) -- [ c.227 ]




ПОИСК







© 2025 chem21.info Реклама на сайте