Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уравнени состояния идеального газа

    Эмпирические уравнения состояния. В расчетах процессов перегонки и ректификации для описания поведения реальных газовых систем широко используются два эмпирических уравнения состояния. Первое содержит коэффициент сжимаемости г, учитываюш ий отклонение объема V одного моля реального газа от значения отвечающего уравнению состояния идеального газа [c.14]


    Если применить правило фугитивности (1.40) к паровой фазе, подчиняющейся уравнению состояния идеального газа, то фугитивность / должна равняться давлению р, под которым находится система, и уравнение (1.40) преобразуется к закону Дальтона [c.29]

    Законы Рауля — уравнение (1.48) и Дальтона — (1.51) могут применяться лишь к практически идеальным в жидкой фазе растворам, паровая фаза которых подчиняется уравнению состояния идеальных газов. Во всех остальных случаях необходимо интегрировать уравнение (1.38). [c.29]

    Уравнение состояния идеального газа [c.7]

    Природные газы можно считать идеальными (совершенными), если пластовые давления газовых месторождений невелики (до 6-9 МПа), и газ. отбирают при депрессии до I МПа. Уравнением состояния идеального газа служит уравнение Клайперона-Менделеева  [c.49]

    УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНЫХ ГАЗОВ [c.48]

    Состав газовых смесей в области температур и давлений, при которых можно применять уравнение состояния идеального газа или закон Дальтона, выражается обычно с помощью парциального давления компонента / и общего давления смеси В рас- [c.104]

    Уравнение состояния идеального газа имеет вид  [c.129]

    Рассчитывая давление в баллоне по уравнению состояния идеального газа (VI-16), мы нашли бы  [c.135]

    Зависимость (У1-52) справедлива только тогда, когда поведение системы можно описать уравнением состояния идеального газа. При высоком давлении рассчитанная таким образом константа равновесия Кр зависит от давления. [c.169]

    Решение. Реакция проходит при постоянном объеме, следовательно, по уравнению состояния идеальных газов имеем  [c.218]

    Очень часто для газовых реакций, протекающих при высоких температурах и давлениях, не превышающих атмосферного, уклонения от законов, основанных на уравнении состояния идеальных газов, имеют столь незначительную величину, что их практически можно не принимать во внимание. Однако, нередко приходится сталкиваться и с такими случаями, когда в газообразной системе концентрации столь велики, что уравнение состояния идеальных газов к ним неприменимо. [c.156]

    Уравнение состояния идеального газа. В общем случае переход газа из одного состояния в другое сопровождается изменением 1 сех трех параметров состояния. Пользуясь законами Бойля — Мариотта и Гей-Люссака, можно вывести уравнение, связывающее параметры состояния газа в этом случае. [c.22]

    Уравнение состояния идеальных газов принимает простую универсальную форму, если воспользоваться следствием из известного в физике закона Авогадро, согласно которому в равных объемах всех идеальных газов при одинаковом давлении и температуре содержится одинаковое количество молекул. [c.23]


    Подставляя в уравнение состояния идеального газа значения параметров при нормальных условиях (р= 101 325 Па, Т = 273,15 К), получим  [c.24]

    Уравнение состояния идеального газа принимает следующий вид  [c.24]

    В этом виде уравнение состояния идеального газа называется уравнением Клапейрона — Менделеева. [c.24]

    Из уравнения состояния идеального газа следует, что произведение pv тоже зависит только от температуры. Поэтому энтальпия идеального газа является функцией одной температуры газа. Для энтальпии можно получить простую формулу  [c.26]

    В соответствии с уравнением состояния идеального газа [c.29]

    Уравнения (I, 47), (I, 48) и (I, 49), так же как и уравнения (I, 43) и (I, 46), являются термодинамическими уравнениями, так как они вытекают из первого закона термодинамики. Одновременно они являются следствием уравнения состояния идеального газа и поэтому приложимы лишь к идеальным газам и не являются общими термодинамическими уравнениями, справедливыми для любых систем. [c.54]

    Если, наконец, воспользоваться уравнением состояния идеального газа р = пкТ, то число столкновений молекул с плоской поверхность о площадью в I лl в течение 1 сек можно представить также в таком виде  [c.109]

    Уравнение Клапейрона — Менделеева (уравнение состояния идеального газа) связывает массу (т, ki ), температуру (7, К), давление (Р, Па) и объем (V, м ) газа с его мольной массой (М, кг/моль)  [c.21]

    Мольные массы газов можно вычислить такн<е, пользуясь уравнением состояния идеального газа — уравнением Клапейрона — Менделеева [c.30]

    Пар подчиняется уравнению состояния идеальных газов [c.167]

    Из (7.27) с учетом данных табл. 7.5 следует, что при отклонении значения параметра от нулевого уравнение состояния приближается к уравнению состояния идеального газа. На рис. 7.8 приведены результаты расчета зависимости давления от плотности числа частиц в системе. Эти данные показывают, что точка фазового перехода согласуется с оценкой в приближении (7.25). [c.131]

    Объединенный газовый закон (уравнение состояния идеального газа) РУ = КТ. Нормальные температура и давление. Идеальные и реальные газы. [c.113]

    ОБЪЕДИНЕННЫЙ ГАЗОВЫЙ ЗАКОН (УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА] [c.127]

    Численное значение универсальной газовой постоянной К, входящей в уравнение состояния идеального газа (3-8), зависит от выбора единиц, в которых измеряются давление и объем газа (предполагается, что температура всегда выражается в абсолютной шкале Кельвина) Если давление измеряется в атмосферах, а объем-в литрах, то К = = 0,082054 л-атм К моль Но если все величины измеряются в единицах системы СИ, то, как указано в приложении 1, К = = 8,3143 Дж К моль (из гл. 15 мы узнаем, что произведение РУ имеет размерность работы или энергии). [c.130]

    Для ответа на поставленный вопрос следует воспользоваться полным уравнением состояния идеального газа (3-8), приняв в нем Р= 1,000 атм, К = = 0,08205 л атм К- -моль , Г = 298 К и н = 75.0 г/2,016 г-моль = 37,2 моля. Тогда [c.130]

    Характеризует степень отклонения свойств реальных газов и паров от рассчит ываемых по уравнениям состояния идеального газа. Фугитивность (f) измеряется в тех же единицах, что и давление и 1аменяет его в уравнениях идеального состояния применительно к [c.82]

    В применении к различным системам используется понятие состояния—газообразное, жидкое, твердое. В термодинамике конкретная система определяется ее состоянием. Г ростейшим примером описания состояния системы является уравнение состояния идеального газа. [c.35]

    Например, в ДВС, крупных воздухоразделительных установках, системах промышленного воздухосиабжения сжимаемым газом является воздух, а интервал давлений относительно невелик. В этом наиболее простом случае термические свойства сжимаемого воздуха с достаточной точностью описываются уравнением состояния идеального газа [c.6]

    Используемые для расчетон химических равновесий термодинамические соотношения, как легко видеть из приводимых в учебниках термодинамики выводов (см., например, [1, 2, 4]), основаны на применении уравнения состояния идеальных газов к описанию свойств реагирующих газовых смесей. Поэтому понятно, что применимость этих уравнений ограничивается только теми случаями, когда газовые смеси подчиняются уравнению состояния идеальных газов. В применении к реальным системам эти уравнения могут привести 1г некоторым неточностям, величина которых будет тем больше, чем больше отличаются свойства реагирующих веществ от свойств идеальных газов. [c.156]

    Люис и Рендалл [5] для учета влияния оишонений реальных газов от уравнения состояния идеальных газов ввели в обычные термодипамиче-ские соотношения, основанные на применении идеальных газовых законов, ряд формальных по существу факторов, позволяющих получить более точные результаты нри расчетах. [c.159]

    Изменение химического потенциала какого-либо компонента в системе, подчиняющейся уравнению состояния идеальных газов нри постоянных давленнях и температуре, связано с изменением парциального давления следующим соотношением [c.159]


    В системах, подчиняющихся уравнению состояния идеальных газов, равновесные соотношения, как мы видели, определяются уравнением (19), связывающим иарцпа [ьпые давлеиия ]л =. т Р с константой равновесия Кр. [c.162]

    В изохорпом процессе газ не совершает внешней работы, потому что пе изменяется его объем. Поэтому вся подведенная теплота идет на увеличение внутренней энергии газа. Из уравнения состояния идеального газа р-о=ЯТ следует, что [c.28]

    Уравнение (X, 53) может служить только для расчетов первого приближения. Уравнение состояния идеальных газов неприложимо к плазме, т. е. смеси ядер и элементарных частиц, так как в плазме имеют место не только высокие температуры, дающие возможность осуществляться ядериым реакциям, но и сильные взаимодействия частиц, вызывающие большие отклонения от идеальных законов. [c.345]

    Полученное уравнение по форме иаиомкиает уравнение состояния идеального газа Клапейрона — Менделеева. Эго уравнение позволяет по величине осмотического давления раствора определять мольную массу (а значит, и относительную молекулярную массу) раствореииого вещества. [c.226]


Смотреть страницы где упоминается термин Уравнени состояния идеального газа: [c.16]    [c.18]    [c.44]    [c.52]    [c.62]    [c.235]    [c.114]    [c.118]    [c.60]    [c.127]   
Общая химия в формулах, определениях, схемах (1985) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Газ идеальный уравнение

Газы идеальные

Идеальных газов уравнение

Состояния газа уравнение

Уравнение идеального газа

Уравнение состояния

Уравнение состояния газов

Уравнение состояния идеального газа



© 2025 chem21.info Реклама на сайте