Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на однородной поверхности, получение термодинамических

    К. Д. Щербакова (Московский государственный университет им. М. В. Ломоносова, химический факультет). Графитированная термическая сажа обладает достаточно однородной, а также термически и химически стойкой, хорошо адсорбирующей поверхностью и принадлежит к I типу адсорбентов, т. е. неспецифических [1]. Адсорбционные свойства таких саж почти полностью определяются свойствами системы адсорбат — базисная грань графита. Большая однородность этих саж позволяет получить при высоких температурах и малых заполнениях достаточно симметричные хроматографические пики, что свидетельствует о том, что при этих условиях справедлива изотерма распределения Генри. Теплоты адсорбции при малых заполнениях отражают энергию неспецифического взаимодействия адсорбат — адсорбент. Для симметричных пиков их особенно легко определить по зависимости удерживаемых объемов от температуры. Поэтому нахождение общей связи абсолютных величин удерживаемых объемов (констант Генри, отнесенных к единице поверхности) и полученных из них теплот адсорбции при малых заполнениях со структурными характеристиками молекул адсорбата весьма полезно для суждения об энергии взаимодействия сложных молекул с адсорбентом и термодинамических характеристиках адсорбции, являющихся объектами молекулярностатистических расчетов. [c.75]


    В монографии описаны способы получения практически важных адсорбентов с близкими к однородным поверхностями, их адсорбционные свойства и применение в хроматографии. Рассмотрены общие уравнения термодинамики адсорбции и уравнения, основанные на различных моделях адсорбционного слоя. Приведены способы расчета термодинамических характеристик адсорбции из опытных данных но газовой хроматографии, изотермам п теплотам адсорбции. Изложена молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий при адсорбции. Рассмотрены результаты расчетов адсорбционных равновесий для простых и сложных молекул на основе атом-атомных потенциальных функций межмолекулярного взаимодействия. [c.2]

    Название данной книги, указывающее на адсорбцию на однородных поверхностях, может показаться несколько противоречивым, так как нельзя получить идеально однородные поверхности твердых тел. Однако выполненные за последние 20 лет работы но синтезу новых адсорбентов показали возможность получения поверхностей, близких к однородным. Влияние остаточной неоднородности поверхности на адсорбционные свойства оказалось или соизмеримым с влиянием погрешностей экспериментальных методов измерения термодинамических свойств адсорбционных систем, или настолько малым, что его можно учесть при обработке экспериментальных результатов. [c.10]

    Для адсорбентов с близкой к однородной поверхностью произведены многочисленные измерения величин адсорбции и соответствующих величин давления или концентрации в газовой фазе при постоянной (изотермы адсорбции) и при разных температурах. Эти измерения производились как статическими, так и газохроматографическими методами. Значительно меньше сделано калориметрических измерений (статических и динамических) теплот адсорбции. Наконец, совсем немного сделано калориметрических измерений теплоемкости адсорбционных систем. Однако именно все эти независимые измерения, вместе взятые, для одной и той же системы адсорбат—адсорбент дают необходимую информацию о термодинамических свойствах адсорбционной системы. Вместе с тем перечисленные методы измерений имеют свои особенности, которые необходимо зачитывать как при оценке точности измеряемых величин, так и при дальнейшей их обработке для получения термодинамических характеристик адсорбции, не зависящих от способа измерений. [c.93]


    Получение термодинамических характеристик адсорбции на однородной поверхности из экспериментальных данных [c.165]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    Другой путь нахождения уравнения состояния адсорбированного вещества, уравнения изотермы адсорбции и зависимостей ДС/ и ДС от Г представляет использование некоторых приближенных моделей для адсорбированного вещества. Свойства этих моделей можно рассмотреть с помощью термодинамического или молекулярно-стати-стического метода. Таким путем можно, например, найти уравнения, приближенно описывающие изотермы адсорбции и зависимости от Г величин Д[/ и ДС в довольно широкой области заполнения однородной поверхности, включая переход к преимущественно полимолекулярной адсорбции. При использовании только классического термодинамического метода (т. е. уравнений, полученных в гл. III) связь входящих в эти уравнения констант с потенциальными функциями межмолекулярного взаимодействия адсорбат — адсорбент и адсорбат — адсорбат не раскрывается. Эти константы определяются из опытных данных. Такое описание термодинамических свойств адсорбционной системы во многих случаях, особенно при достаточно высоких заполнениях поверхности, оказывается единственно возможным. Вместе с тем обработка экспериментальных данных с помощью таких уравнений позволяет найти константы, отражающие межмолекулярные взаимодейтвия адсорбат — адсорбент [константу Генри Кх и величины Д. З, ДС/ и ДС (см. гл. III)] и адсорбат — адсорбат и исследовать их зависимость от природы адсорбата и адсорбента и температуры. Полученные таким путем константы [c.152]

    Недостатком ранних работ по адсорбции на неоднородных поверхностях было отсутствие обоснованных независимо от адсорбционных измерений физических моделей этих поверхностей и невозможность сопоставления с соответствующими однородными поверхностями. Обзор более ранних работ по адсорбции на неоднородных поверхностях с учетом взаимодействия адсорбат — адсорбат дан Хонигом [53, 54]. Здесь мы рассмотрим метод учета неоднородности реальной поверхности для получения термодинамических характеристик адсорбции на однородной поверхности той же природы, предложенный Россом и Оливье [И, 55], как пример одной из первых попыток [c.166]

    Дан статистико-термодинамический вывод логарифмической изотермы адсорбции для ионов на границе ртуть/раствор и получено теоретическое выражение для коэффициента Есина — Маркова. Полученные ре.зультаты позволяют объяснить экспериментальные данные по влиянию поверхностно-активных ионов на потенциал максимума электроканиллярной кривой. В отличие от известной логарифмической изотермы Темкииа выведенная в данной работе изотерма относится непосредственно к однородной поверхности и содержит в явном виде характеристики двойного слоя. [c.275]

    Интересно познакомиться с более современными данными измерений физической адсорбции, расширившими исследования Брунауэра и Эммета. Адсорбционные изотермы и получаемые на основании их термодинамические величины, так же как и прямые калориметрические измерения теилот адсорбции, послужили материалом для открытия заметной степени неоднородности всех тех поверхностей, для которых характерны типичные изотермы БЭТ. Превосходным подтверждением первоначальных идей Ленгмюра, получивших развитие в работах Хилла [1] и Хэлси [2], было установление фактов, что в случае энергетически однородной поверхности изотермы, получаемые при температуре жидкого азота, обнаруживают ступенчатый ход, соответствующий последовательным слоям физически адсорбируемых газов, таких, как аргон, криптон и азот, а не гладкий сигмоидный, характерный для исследований по БЭТ. Здесь следует упомянуть о прекрасных и трудных измерениях, проведенных Орром [3] в лаборатории Ридиела с кристаллами хлористого калия, тщательно расщепленными для получения большой однородной поверхности. Начальное снижение теплоты адсорбции указывало на присутствие участков с более высокой энергией, но далее при заполнении значительной части монослоя наблюдалось постоянство теплоты адсорбции и повышение до максимального значения при завершении монослоя, причем оба последних наблюдения впервые охарактеризовали поведение однородной непористой поверхности при физической адсорбции. После исследований Орра такие же явления были описаны в работах Родина [4] при адсорбции газов на различных поверхностях монокристаллов и в многочисленных современных работах с графитизированной сажей. В процессе графитизирования сажи при последовательно повышающихся температурах (1000, 1500, 2000 и 2700°) обнаруживается изменение от гетерогенной поверхности исходной сал<и к поверхности, замечательной своей гомогенностью при изучении не только с помощью рентгеновских лучей и электронного микроскопа, но и по кривым диффе- [c.13]


    Авгуль H.H., Киселев A.B., Пошкус Д.П. Адсорбция газов и паров яа однородных поверхностях. М., "Хшия",1975,384 с.Библ.970 назв. (Описаны способы получения практически важных адсорбентов с близкими к однородным поверхностями, их адсорбционные свойства и применение в хроматографии. Приведены способы расчета термодинамических характеристик адсорбции иа опытных данных по ГХ). [c.5]


Смотреть страницы где упоминается термин Адсорбция на однородной поверхности, получение термодинамических: [c.112]    [c.85]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте