Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристики адсорбентов и их виды

    К основным видам промышленных адсорбентов с заданной пористой структурой относят активные угли, силикагели, активный оксид алюминия, цеолиты (природные и синтетические), пористые стекла, природные глинистые материалы, а также смешанные адсорбенты. Адсорбенты классифицируют в зависимости от размеров пор микро- (эффективный радиус от 0,5 до 1,0 нм), мезо- (эффективный радиус от 1,5 до 100-200 нм) и макропоры (эффективный радиус более 100-200 нм). К важным характеристикам адсорбентов относят также величину удельной поверхности (от долей до нескольких сотен м /г) и суммарный объем пор (см /г). [c.42]


    Характеристики адсорбентов и их виды [c.564]

    Одной из основных характеристик адсорбентов и адсорбционных взаимодействий является изотерма адсорбции. Брунауэром выделены пять основных типов изотерм адсорбции. Вид изотермы связан с пористой структурой адсорбента (см. 14.1). [c.43]

    Из уравнения (8.10) следует, что при с->-0 AF, как и Д 1, стремится к —ОО. Это затрудняет сопоставление для разных адсорбционных систем А 1 и AF, при с- 0 и Гг- 0, когда изменение термодинамических функций при адсорбции характеризует только взаимодействие адсорбат — адсорбент. Изотерма же адсорбции, из которой вычисляются Ац и AF, содержит эту характеристику в виде начального ее наклона, равного константе Генри, которая, как уже известно (см. лекции 1 и 7), может быть определена из газохроматографических измерений. Поэтому важно установить связь Ац с константой Генри, что будет сделано в разделе 8.5. [c.147]

    Целесообразно выделение одного признака, могущего наиболее полно, качественно и количественно характеризовать широкий диапазон свойств и параметров текстуры сорбентов. Именно такой рациональной классификацией по одному главному признаку (по размеру пор) и является предложенная Дубининым. Следующими по важности признаками, по моему мнению, являются характер распределения размеров пор или частиц и знак кривизны поверхности. Безусловно, реальные адсорбенты не могут быть представлены одним каким-либо типом в чистом виде. Однако нет надобности вводить в каждый классификационный признак дополнительный тип смешанной структуры. При характеристике адсорбента достаточно указывать преобладающий тип и, если возможно, доли представительства других типов. Нежелательно также классифицировать адсорбенты по форме пор. [c.55]

    Характеристики адсорбентов различных видов и марок, применяемых для очистки газов за рубежом (в том числе импрегнированных), приводятся Калвертом С. [6]. [c.76]

    В этих уравнениях выделим искомые параметры и выразим относительно них данные уравнений изотерм. Поскольку вид изотермы находится в прямой связи с характеристиками системы адсорбент — адсорбат, то в [c.229]

    К сожалению, многообразие различных сочетаний компонентов в бинарных и более сложных смесях, с которыми встречаются инлгенеры при решении конкретных задач газоразделенпя, не позволяет дать исчерпывающий материал по адсорбционному равновесию, необходимый для расчета технологического процесса. Работы теоретического плана пе дают простого и универсального метода выч1юления меры избирательности адсорбции — коэффициента разделения. Между тем избирательные свойства адсорбентов проявляются уже в результате сравнения изменения энергии компонентов в процессе фазового перехода. Это сравнение в теории объемного заполнения микропор находит количественную характеристику в виде коэффициента аффинности р. Значения Р установлены для большинства компонентов промышленных газов [8, 9]. [c.157]


    При оформлении результатов опыта фиксируют следующие данные характеристику исходного сырья и адсорбента, условия процесса разделения, выход н-парафинов (в % от исходного сырья), материальный баланс процесса, свойства к-парафинов и денормализата. Материальный баланс процесса выделения нормальных парафинов записывают в следующем виде  [c.241]

    Изотермы адсорбции определяются опытным путем. Вид изотермы адсорбции зависит от многих факторов удельной поверхности адсорбента, объема пор, их распределения по размерам и других характеристик структуры адсорбента, свойств поглощаемого вещества, а также от температуры процесса. В качестве примера на рис. XIV- , а изображены виды типичных изотерм адсорбции для различных веществ, а на рис. XIV- , б— изотермы адсорбции окиси углерода на угле при различных температурах. [c.566]

    Адсорбция газов на твердых адсорбентах не только наиболее практически важный, но и наиболее сложный для теоретического описания вид сорбционных явлений. В первую очередь это связано со сложностью структуры поверхности твердых тел, с неоднородностью их геометрического строения, химического состояния, наличием примесей и т. д., а следовательно, с существенной энергетической неоднородностью поверхности. Известную сложность представляет также учет взаимодействий молекул адсорбата с совокупностью молекул адсорбента, изменение состояния адсорбата и адсорбента при адсорбции. Теплота адсорбции является важной характеристикой адсорбционного процесса. Она является мерой интенсивности адсорбционных сил — сил взаимодействия молекул адсорбата с поверхностью адсорбента и между собой. [c.210]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Химический состав активной окиси алюминия — адсорбента обычно жестко не регламентируется. Такие иримеси, как окись кремния, обычно не изменяют характеристик продукта, даже если их содержание составляет несколько процентов. Наличие железа ухудшает товарный вид продукта, и потому его содержание обычно невелико (менее 0,2%). Существенное значение имеет содержание солей натрия присутствие щелочи понижает термическую стабильность адсорбентов и кислотность их поверхности (последнее отражается на качестве адсорбента, применяемого при осушке воздуха и очистке его от непредельных углеводородов в производстве жидкого кислорода). [c.101]

    Следует отметить, что в подавляюш,ем большинстве случаев очистка н<идкости или извлечение из нее примеси производятся, когда концентрация извлекаемого веш ества невелика. На этом участке изотермы вещества имеют обычный вид, характерный для адсорбции паров, и ими пользуются для расчета адсорбционных процессов, или, как это было показано ранее на примере голубой сини, для определения характеристик (удельной поверхности) адсорбентов. На рис. 6,2 представлены изотермы адсорбции тиофена из растворов в и-гептане на силикагеле, окиси алюминия и цеолите NaX [8]. Кривые в левой части отражают преимущественную адсорбцию тиофена при его низких концентрациях, кривые правой части — гиббсовскую адсорбцию во всем диапазоне соотношений компонентов. [c.164]

    Изотермы адсорбции на промышленных микропористых адсорбентах по классификации С. Брунауера [3] относятся к первому типу, т. е. функция у = F(u) в безразмерных переменных у = а/ао, и = / q является выпуклой в интервале [О, 1]. В настоящее время для аналитического описания экспериментальных изотерм адсорбции известно большое количество уравнений изотермы Фрейндлиха, Лангмюра, БЭТ, Хилла — де-Бура, Фольмера, Кисарова, Дубинина — Астахова и др. Каждое из этих уравнений с той или иной степенью точности отражает равновесные характеристики системы адсорбент — адсорбат. Зачастую одни и те же экспериментальные данные в широком интервале заполнения адсорбционного пространства удовлетворительно описываются различными уравнениями [6], и выбор аналитического вида функции у F(u) определяется либо простотой выражения, либо приверженностью исследователя к тому или иному уравнению, либо возможностью получить какую-то дополнительную информацию об изучаемой системе характеристическую энергию адсорбции, предельный объем микропор, ширину щелевой поры, удельную поверхность адсорбции и т. п. [c.232]


    Наиболее мелкопористые адсорбенты — синтетические цеолиты (молекулярные сита). Они представляют собой пористые кристаллы, алюмосиликатный каркас которых состоит из тетраэдров и АЮ . Отрицательный заряд в АЮ компенсируется катионами На и Са. Образуемая промежутками между структурными элементами кристаллов первичная пористая структура является неизменной характеристикой каждого типа цеолита. Для цеолита типа А характерно соединение четырех тетраэдров, типа X — соединение шести тетраэдров, которые связаны между собой через кислород. Размеры входных окон, образованных кислородными мостиками, определяют доступность внутренних полостей цеолитов для адсорбирующихся молекул. Таким образом, цеолиты обладают селективными свойствами. Заменой вида катионов можно изменять размеры окон. Поры цеолитов типов А и X представляют собой почти сферические полости диаметром соответственно 1,14-10 и 1,19-10- м с размерами входных окон около 0,5-10 и 9 10 м. Цеолиты, являясь из-за наличия атомов кислорода полярными адсорбентами, энергично адсорбируют электрически несимметричные молекулы (Н2О, С02)и молекулы органических веществ с кратными связями (этилен, ацетилен и т. д.) [4]. [c.172]

    Разделение нефтяных фракций на адсорбентах с неоднородной пористостью. Наиболее широкое применение среди этой группы адсорбентов получили силикагели, что объясняется возможностью варьирования в широких пределах их адсорбционных характеристик, негорючестью, относительной дешевизной. Силикагель — это высушенный гель кремниевой кислоты. В России его выпускают в гранулированном и кусковом виде. В зависимости от пористой структуры силикагели подразделяют на мелкопористые и крупнопористые, которые классифицируют пО маркам в зависимости от размеров зерен. [c.91]

    Пористые материалы классифицируются не только по геометрии пор, но и по их размерам. Существует ряд классификаций именно по этому признаку 51 ]. Деление, предлагаемое тем или иным автором, является чисто условным. Так, М. М. Дубинин определяет три типа пор макропоры, для которых нижний предел радиуса кривизны можно принять 100—120 нм (1000—1200 А) переходные поры, у которых эффективный радиус кривизны лежит в пределах от 120 до 1,5 нм и, наконец, микропоры с радиусом менее 1,5 нм [68]. А. В. Киселев основными признаками для отнесения адсорбентов к тому или иному типу структуры считает характеризующие их изотермы адсорбции всего же выделено четыре типа [69]. И. Е. Неймарк расширяет классификацию Киселева до пяти типов, вводя уточнение в виде подгрупп с их характеристикой [51, 65]. [c.62]

    Оценить качество (эффективность) разделения для любого вида хроматографии можно с помощью таких характеристик, как время удерживания /уд и объем удерживания У уд. Временем удерживания называют время от момента ввода пробы до момента появления на хроматограмме максимума пика. Время удерживания тем больше, чем сильнее сорбируется данный компонент. Объем удерживания — это объем элюента, прошедпжй через слой адсорбента за время удерживания. Связь между временем и объемом удерживания дает выражение [c.350]

    К методам приведения относится и так называемый -метод де Бура [167], получивший наибольшее распространение. Этот метод, как будет показано далее, представляет особый интерес при исследовании адсорбции из водных растворов, и к его более детальному анализу в этой связи мы еще должны будем вернуться. Для определения удельной поверхности адсорбентов по этому методу также пользуются стандартным адсорбентом с известной поверхностью. При исследовании адсорбции на углеродных материалах в качестве стандарта выбирают непористую сажу. Изотермы адсорбции стандартного адсорбата (азота) на обоих адсорбентах выражают в виде зависимости объема адсорбированного вещества 1>а от равновесного относительного давления. При этом плотность адсорбированного вещества принимают равной плотности его в жидком состоянии при той же температуре (как это впервые было допущено Поляни). Поскольку поверхность непорпстого стандартного адсорбента известна, то из величин адсорбированного объема вещества можно рассчитать среднюю статистическую толщину адсорбционного слоя I и представить ее как функцию plps В -методе допускается, что на адсорбенте с неизвестной удельной поверхностью одинаковой химической природы средняя статистическая толщина адсорбционного слоя при равных р р такова же, как и на адсорбенте с известной поверхностью. Это условие справедливо при приблизительном равенстве энергетических характеристик адсорбентов. Для всех таких адсорбентов должна существовать единая кривая = / (р/р.ч), что и подтвернадается большим количеством экспериментальных измерений [141, 142]. [c.71]

    Наиболее распространенными адсорбентами являются различные виды силикагеля, оксида алюминия и молекугшрньГе сита. Адсорбируемые вещества, выделяющиеся из органической фазы, обычно являются более полярными или поляризуемыми, чем соединения объемной фазы. Необходимо четко различать две основные характеристики адсорбирующих материалов адсорбционную емкость (т. е. поглотительную способность адсорбента) и силу адсорбции. Адсорбционная емкость зависит от величины доступной для адсорбции гговерхности, т. е. представляет собой удельную поверхность (см /г), в то время как сила адсорбции есть энергия связи адсорбата и адсорбента [c.160]

    Именно функция W р) задает вид реальной поверхности Ферми, определяемый, иапример, в опытах по гальвапомагнитным эффектам [15] или по эффекту де-Гааза-ван Альфена [16]. В задаче о химической адсорбции естественно считать зависимость W р) известной (это есть характеристика адсорбента как такового) .  [c.143]

    Уравнение (69) является термическим уравнением адсорбции. Часто для характеристики адсорбентов используют зависимость адсорбционной способности от парциального давления (или концентрации) при постоянной температуре. Изотерма адсорбции выражает максимальную статическую емкость адсорбента. Уравнение изотермы адсорбции в общем виде при Г= onst запишется так  [c.54]

    Размер кристаллов синтетических цеолитов измеряется в микрометрах. В практике цеолиты используются в гранулированном виде с добавкой 18— 20% связующих веществ, С введением связующих веществ уменьшается количество собственно адсорбента в грануле и поглотительная способность на единицу массы (или объема). Другой нежелательный эффект связан с образованием при грануляции так называемой вторичной пористой структуры. Для проникновения молекулы адсорбируемого вещества внутрь кристалла цеолита она должна проникнуть сначала через вторичную пористую структуру и зате.ч внутрь кристалла цеолита. Процесс диффузии определяет скорость адсорбции, и последняя при использовании гранулированных цеолитов существенно меньще, чем при использовании кристаллов. Существенную роль может играть и замазывание связующим веществом входов в большие полости кристаллов цеолита. Ухудшение кинетических характеристик адсорбентов во многих случаях довольно существенно влияет на технологические показатели адсорбционных процессов и прежде всего на глубину очистки или осущки. В табл. 13 приведены показатели качества отечественного гранулированного цеолита со связующим NaA общего назначения (ТУ 38-10-281—80), широко используемого в различных областях техники для осушки газов и жидкостей. [c.62]

    С другой стороны, практика показывает, что и при фиксированном расходе сырого газа через аппараты УКПГ имеет место значительный разброс продолжительности времени нагрева адсорбента в стадии десорбции. Указанное обстоятельство обусловлено статистически различными теплофизическими и механическими характеристиками адсорбента в каждом аппарате. Следствием описанной ситуации, с учетом наличия аналогичных индивидуальных особенностей контактных аппаратов, работающих в стадии охлаждения сорбента, является распространенная в практике эксплуатации установок адсорбционной осушки газа методика экспериментального определения для каждого контактного аппарата специфического минимального периода нагрева и охлаждения адсорбента в зависимости от производительности этого аппарата по сырому газу в стадии адсорбции соответственно А /гн и А ло. Исходя из изложенного общее время ведения процесса десорбции в контактных аппаратах г-й пары можно записать в виде  [c.173]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]

    Построить градуировочный график зависимости удельной поверхности и удельного удерживаемого объема для реактивных силикагелей с различной удельной поверхностью, выпускаемых в виде наборов нашей промышленностью. В табл. 18 приведены структурные характеристики реактивных силикагелей отечественного производства. Обозначения А — насыпная плотность, г1см S — удельная поверхность адсорбента, м г d — истинная плотность, [c.200]

    Знание скоростей диффузии важно не только для теории А., но и для расчета пром. адсорбц. процессов. При этом обычно имеют дело не с отдельными зернами адсорбента, а с их слоями. Кинетика процесса в слое выражается очень сложными зависимостями. В каждой точке слоя в данный момент времени величина А. определяется не только видом ур-ния изотермы А. и закономерностями кинетики процесса, но также аэро- или гидродинамич. условиями обтекания зерен газовым или жидкостным потоком. Кинетика процесса в слое адсорбента в отличие от кшетики в отдельном зерне наз. динамикой А., общая схема решения задач к-рой такова составляется система дифференц. ур-ний в частных производных, учитывающая характеристики слоя, изотерму А., диффузионные характеристики (коэф. диффузии, виды переноса массы по слою и внутри зерен), аэро- и гидродинамич, особенности потока. Задаются начальные н краевые условия. Решение этой системы ур-ний в принципе приводит к значениям величин А. в данный момент времени в данной точке слоя. Как правило, аналитич. решение удается получить только для простейших случаев, поэтому такая задача решается численно с помощью ЭВМ. [c.43]

    Эффективность работы адсорбционной установки в первую очередь зависит от соответствия способа организации процесса физикохимическим характеристикам обрабатываемых газов и адсорбента. По расходу, температуре, влажности, давлению отбросных газов, концентрации загрязнителя и его свойствам практически однозначно подбираются вид адсорбента (нейтральный, поляризованный или импреги-нированный), конструкция аппарата (с подвижным или неподвижным слоем и т.д.), вид адсорбции (физическая или химическая), режимы обработки (периодическая или непрерывная). На этой стадии разработки должны быть тщательно подобраны и проверены на соответствие друг другу все элементы системы адсорбционного обезвреживания. Необходимо также конструктивно определить способы охлаждения и нагрева адсорбента при сорбции и регенерации, компоновки аппаратов, их обвязки коммуникациями, выгрузки, загрузки и перетока адсорбента, предусмотреть возможность автоматического регулирования процесса. Должны быть разработаны системы удаления или утилизации уловленного загрязнителя, отработанного адсорбента и других отходов Конструктивные параметры адсорбера, свойства адсорбента должны соответствовать времени пребывания, необходимому для полного улавливания или обезвреживания загрязнителя. [c.389]

    Кольцевой адсорбер представляет собой двухслойную металлическую конструкцию, в которой адсорбент размещен между внешней и внутренней стенками цилиндрического вертикачьного аппарата. В некоторых типах адсорбционных аппаратов используют различные элементы с целью повышения их эксплуатационных характеристик. Для улучшения процесса теплообмена в адсорбере устанавливают теплообменные элементы или выполняют их в виде трубчатого теплообменника. С целью повышения плотности прилегания верхней решетки с сеткой к слою адсорбента и, как следствие, уменьшения истирания адсорбента в конструкции используют специальные прижимные устройства. [c.44]


Смотреть страницы где упоминается термин Характеристики адсорбентов и их виды: [c.279]    [c.126]    [c.286]    [c.114]    [c.488]    [c.138]    [c.326]    [c.145]    [c.146]    [c.114]    [c.114]    [c.11]   
Смотреть главы в:

Основные процессы и аппараты химической технологии -> Характеристики адсорбентов и их виды

Основные процессы и аппараты Изд10 -> Характеристики адсорбентов и их виды




ПОИСК







© 2025 chem21.info Реклама на сайте