Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционный слой, модель

    В общ,ую процедуру принятия решений при оптимизации пористой структуры катализатора, рассмотренную в разд. 3.1, входит в качестве обязательного этапа составление математической модели гетерогенно-каталитического процесса на зерне катализатора и идентификация ее параметров. Эта модель должна отражать как геометрические характеристики структуры зерна, так и важнейшие особенности собственно физико-химических процессов, протекаюш,их в нем. Для наглядности представления последних удобно мысленно выделить фиксированную группу молекул исходных веществ, которая участвует в ряде последовательных физико-химических стадий суммарного контактного процесса на зерне катализатора 1) перенос исходных веществ из реакционной смеси к внешней поверхности частиц катализатора 2) перенос исходных веществ от внешней поверхности частиц катализатора к их внутренней поверхности 3) адсорбция исходных веществ на активных центрах катализатора 4) реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя 5) десорбция продуктов реакции 6) перенос продуктов реакции от внутренней поверхности частиц катализатора к их внешней поверхности 7) перенос продуктов реакции от внешней поверхности катализатора в объем реакционной смеси. [c.149]


    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]

    Низкомолекулярные и высокомолекулярные ПАВ по-разному заполняют межфазную поверхность, на которой они адсорбируются. Низкомолекулярные ПАВ на границе вода — органическая жидкость располагаются в виде частокола (рис. 4.1, а) из вертикально поставленных молекул — гидрофильная голова , обозначенная кружочком, находится в воде, а гидрофобный хвост — в органической жидкости. Для высокомолекулярных ПАВ нельзя предложить такую же простую геометрическую модель их расположения на межфазной границе, так как оно существенно зависит от концентрации ПАВ в адсорбционном слое. При малой концентрации ПАВ молекулы расположены горизонтально (рис. 4.1, б). При повышении концентрации ПАВ ориентация молекул, так же, как и у низкомолекулярных ПАВ, стремится к вертикальной 13, 78]. [c.60]

    Таким образом, в результате изучения адсорбционных слоев,, образуемых нефтью и ее моделями в пористой среде, и учитывая, [c.63]

    Было предложено несколько теорий образования ДЭС, из которых наиболее известными являются модели Гельмгольца (так называемая модель плоского конденсатора) и модель Гуи-Чепмена. Современные представления о структуре ДЭС базируются на теории Штерна, согласно которой противоионы находятся в двух положениях одна их часть образует адсорбционный слой (так назы- [c.71]

    Такое значение диэлектрической постоянной в адсорбционном слое при д = 0 и малых заполнениях поверхности органическими катионами является вполне реальным. Итак, несмотря на весьма приближенный характер рассмотренной электростатической модели, с ее помощью удается удовлетворительно описать наблюдаемое на опыте резкое увеличение поверхностной активности органических ионов при переходе от границы раздела раствор/воздух к границе раствор/ртуть. [c.45]


    Ограничимся изучением модели двухмерного слоя адсорбированных молекул однокомпонентного адсорбата [памятуя трудности, которые возникают в этой модели, в отличие от общей трактовки Гиббса, свободной от выбора толщины адсорбционного слоя (см. [c.234]

    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]

    Многочисленные эксперименты подтверждают изменение структуры воды в поверхностных пленках. Так, методом ИК-спектрометрии на кварце установлена определяющая роль поверхностных водородных связей, искажающих сетку Н-связей, существующую в объеме воды . Исследование адсорбционных слоев на пакетах кварцевых пластин тем же методом показало сдвиг максимума полосы поглощения, интерпретируемый как усиление интенсивности Н-связей в слоях воды толщиной 2—4 нм. Полученные результаты хорошо согласуются в отношении толщины пленок к с эллипсометрическими измерениями. Значения Н возрастали от 4 до 5,3 нм при р ро 1 с уменьшением краевого угла 0, т. е. с ростом гидрофильности кварца наоборот, при гидрофобизации поверхности кварца (триметил-хлорсиланом) толщина пленки становилась соизмеримой с ошибкой опыта (0,3 нм). Другие эллипсометрические исследования адсорбционных слоев воды на различных твердых поверхностях показали, что толщина их 10 нм и также связана с величиной краевого угла. Многочисленные исследования граничных слоев, моделью которых являются пленки, различными методами (гл. XI. 1) приводят к близким оценкам толщины слоев с измененной структурой, однако для таких слоев, постепенно переходящих в жидкую фазу, при отсутствии физической границы раздела оценка толщины может сильно варьировать в зависимости от метода (см. раздел У.1). Интересно отметить, что с повышением температуры до 70 °С толщина поверхностных пленок резко уменьшается это указывает на существенную роль Н-связей, нарушающихся вследствие усиления теплового движения молекул воды. [c.115]

    Рассмотрев модель с разреженными адсорбционными слоями, Макор [210] получил следующую формулу для положительной составляющей энергии  [c.162]

    Используя модель Гуи-Чепмена, удалось объяснить наблюдаемые на опыте явления. С ее помощью была объяснена зависимость емкости двойного электрического слоя от температуры. Однако и эта модель имеет недостатки. В частности, она не учитывает размеры ионов, их взаимодействие с другими ионами, стерические факторы. Об упущениях модели Гуи-Чепмена свидетельствует и то, что в ней не учитывается специфическая адсорбция ионов. Возникновение двойного электрического слоя может быть результатом специфической адсорбции катионов или анионов на электроде с образованием адсорбционных слоев. Адсорбированные ионы притягивают из раствора ионы противоположного знака и на поверхности металла появляется двойной электрический слой. Он может возникнуть и в результате адсорбции поверхностно-активных веществ, например полярных молекул воды. В частности, в водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой из-за адсорбции диполей воды. [c.128]

    Интересный подход в плане поляризационных взаимодействий развивается в работах Ефремова [61]. Им предложена модель структуры клеевых прослоек, основанная на образовании на активных поверхностях ориентированных адсорбционных слоев и на способности системы, которая находится в переходном состоянии, к спонтанной поляризации [62]. Основой модели являются представления об адгезионной связи ион-дипольного характера и когезионной связи диполь-дипольного характера. Последние укрепляются в случае коллективного взаимодействия полярных молекул в ориентированном поверхностном слое адгезива. Учет изменения структуры воды у поверхности и свойств пленочных гелей привел к необходимости считаться с эффектом поляризации воды и полярных молекул — продуктов конденсации. [c.39]


    В монографии описаны способы получения практически важных адсорбентов с близкими к однородным поверхностями, их адсорбционные свойства и применение в хроматографии. Рассмотрены общие уравнения термодинамики адсорбции и уравнения, основанные на различных моделях адсорбционного слоя. Приведены способы расчета термодинамических характеристик адсорбции из опытных данных но газовой хроматографии, изотермам п теплотам адсорбции. Изложена молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий при адсорбции. Рассмотрены результаты расчетов адсорбционных равновесий для простых и сложных молекул на основе атом-атомных потенциальных функций межмолекулярного взаимодействия. [c.2]

    С помощью различных моделей был получен ряд приближенных уравнений изотерм как для мономолекулярной, так и для полимолекулярной адсорбции из газовой фазы па однородной поверхности. При этом использовались как модели локализованной адсорбции, так и модели подвижного адсорбционного слоя [1—30]. Среди них рассматривались модели, учитывающие различные взаимодействия адсорбат — адсорбат, в частности ассоциацию молекул адсорбата. Взаимодействие адсорбат — адсорбат характеризовалось обычно одной или несколькими константами, которые находились из опытных данных. Применение этих приближенных уравнений для обработки экспериментальных изотерм адсорбции позволяет, во-нервых, определять константы Генри и, во-вторых, описывать отклонения изотерм адсорбции от уравнения Генри не только при малых заполнениях, но в благоприятных случаях и во всей области преимущественного заполнения первого слоя до перехода к преимущественно полимолекулярной адсорбции. Это же можно сделать и для зависимостей от заполнения поверхности теплот адсорбции [16, 18, 20, 27—30] и теплоемкостей адсорбционных систем [17-19, 27-30]. [c.153]

    Вириальные уравнения (IV,2) и (IV,3) не связаны с какой-либо конкретной моделью адсорбционного слоя или его толщиной. Они выражают связь гиббсовского избытка адсорбата Г, создаваемого межмолекулярным взаимодействием молекул адсорбата с адсорбентом, с концентрацией адсорбата в объемном газе с. [c.156]

    Величина я в уравнении (VI,42) не связана с какой-либо моделью состояния адсорбированного вещества. Она связана с Г, т. е. она не связана с толщиной адсорбционного слоя. Вводя выражение (VI,37) в уравнение ( 1,42), получаем  [c.213]

    Перед началом капиллярной конденсации, происходящей в какой-либо поре, на стенках поры уже имеется адсорбционный слой. Когда же происходит испарение адсорбированной жидкости, адсорбционный слой остается на стенках последним. Более ранняя модель капиллярной конденсации основана на молчаливом предположении, что этот слой имеет одну и ту же толщину (часто полагалось, что она равна диаметру одной молекулы) независимо от величины давления, при котором происходит конденсация или испарение. Позднее, по мере развития представлений о многослойной адсорбции, стало ясно, что в действительности слой на стенках должен постепенно увеличиваться по толщине при увеличении давления в системе .  [c.173]

    Новые экспериментальные данные подтверждают представления Медведева о протекании полимеризации вблизи адсорбционных слоев полимер-мономерных частиц [40, 41]. Предложена гетерогенная модель полимеризации, согласно коюрой растущая полимер-мономерная частица состоит из обогащенного полимером ядра, окруженного насыщенной мономером оболочкой, которая является основной зоной полимеризации в частице. [c.150]

    Иногда условно допускают, что все молекулы Н25 Оз диссоциированы на ионы, что все п ионрв 5 Оз адсорбированы ядром и что часть ионов водорода в количестве 2(п — х) входит в адсорбционный слой, а следовательно, и -в состав частицы, не связываясь, однако, с определенными ионами, а 2х ионов водорода находятся в растворе. Строение мицеллы, отвечающее этой модели, представлено на рис. 173, на котором ядро ограничено малой окружностью, а частица — второй, больщей окружностью. Мы видим, что ионы 510Г и Н . содержащиеся в адсорбционном слое, располагаются в пространстве закономерно, образуя так называемый двойной электрический слой. [c.517]

    Интересно, что уравнение Ленгмюра, полученное на основании модели локализованной адсорбции газов на поверхности твердого тела, часто хорошо описывает адсорбцию растворенных веществ на поверхности лсидкости (поверхности раздела раствор — газ), при которой адсорбция не локализована, так как молекулы подвин ны и образуют двумерную газо- или жидкоподобную пленку. Однако парадоксальность этого факта лишь кажущаяся. Те основные положения модели Ленгмюра, которые не являются состоятельными при адсорбции газов на твердой поверхности, соблюдаются при адсорбции из растворов поверхность жидкости идеально однородна, и взаимодействие адсорбированных молекул в адсорбционном слое мало отличается от взаимодействия их в растворе. К тому же оно сравнительно ослаблено за счет взаимодействия молекул растворенного вещества с молекулами растворителя и практически не влияет на адсорбцию. [c.219]

    Термодинамическое исследование системы с поверхностями раздела фаз встречает свои трудности. Эти трудности связаны с неопределенностью толщины адсорбционного слоя, т. е. примыкающей к поверхности неоднородной части объемной фазы. Даже в случае инертного адсорбента это относится к примыкающей к его поверхности неоднородной части флюида —газа или жидкости. Действительно, такая важная характеристика этого слоя, как его толщина, остается неопределенной она может зависеть от степени заполнения поверхности раздела молекулами адсорбата, ориентации этих молекул и ее зависимости от заполнения, перехода от MOHO- к полимолекулярному слою, других факторов, связанных со структурой адсорбента и молекул адсорбата (или молекул смеси адсорбатов), и от температуры. Это затруднение требует построения молекулярной модели адсорбционного слоя, например модели мономолекулярного слоя постоянной толщины, т. е., по существу, выхода за рамки классической термодинамики с потерей ее главного преимущества — общности выводов для макроскопических систем. [c.129]

    При изучении адсорбции из растворов часто пользуются моделями поверхностного раствора, в частности, моделью мономолекулярного слоя постоянной толщршы. В лекции 7 отмечалось, что такая модель вводит чуждую термодинамике Гиббса величину — толщину адсорбционного слоя. Обычно толщина адсорбционного слоя не сохраняется постоянной вследствие различий в размерах молекул компонента 1 и 2 и изменения их ориентации с изменением заполнения поверхности адсорбента. Однако есть случаи, когда толщина адсорбционного слоя при адсорбции из бинарного раствора приблизительно сохраняется. К ним относится, например, адсорбция плоских молекул, таких как симметричные полиметилбензолы и ароматические углеводороды с конденсированными ядрами на гидроксилированной поверхности силикагеля из растворов в н-алканах (см. рис. 14.5—14.7, а также лекцию 16). Эти ароматические углеводороды ориентируются преимущественно параллельно поверхности, образуя мономолекулярный поверхностный раствор, толщина которого с ростом концентрации таких ароматических углеводородов в объемном растворе изменяется мало и остается близкой к вандерваальсовым размерам толщины бензольного ядра и молекул растворителя — н-алкана в вытянутой конформации. В этой лекции будут рассмотрены свойства такой двухмерной модели поверхностного раствора постоянной толщины. [c.268]

    Макромолекулы белков и других полимеров развертываются в адсорбционном слое (как и в нерастворимых пленках, см. раздел VIH. 4) таким образом, что гидрофильные части обращены к водной фазе, образуя в ней свободные петли и складки сегментов цепей. Прочность таких белковых слоев на границе воды с углеводородом (эмульсии), как показали работы Измайловой , на 2—3 порядка выше, чем на грайице с воздухом (нерастворимые пленки). Это может быть объяснено более полной развертываемостью макромолекул и образованием большого числа мак-ромолекулярных связей. Еще большей прочностью обладают смешанные пленки, образующиеся при введении маслорастворимых ПАВ в адсорбционный слой желатины (Измайлова). Ориентация молекул ПАВ полярными группами в сторону желатины создает дополнительные контакты. Эти пленки представляют большой интерес как модели биологических мембран. [c.260]

    В последнее десятилетие теория молекулярного взаимодействия в тонких слоях жидкостей получила дальнейшее всестороннее развитие. Тем не менее задача экспериментального определения отрицательного расклинивающего давления и констант Гамакера остается одной из важнейших при исследовании черных пленок. Во-первых, экспериментальное определение констант Гамакера в пленках из предельных углеводородов, стабилизированных ПАВ с небольшими полярными группами и углеводородными радикалами, содержащими только метнльные и метиленовые группы, может быть использовано для проверки теории молекулярного взаимодействия (и различных методов расчета). Во-вторых, обусловлено это тем, что обе фазы эмульсий, моделью которых является углеводородная пленка, обычно многокомпонентны. Кроме того, ван-дер-ваальсовское взаимодействие в черной пленке осложнено наличием достаточно толстых адсорбционных слоев ПАВ, учет влияния которых ввиду их различной структуры, состава и ориентации углеводородных радикалов весьма сложен. В эмульсиях и эмульсионных пленках, полученных из концентрированных ра- [c.131]

    Важным моментом при расчете констант Гамакера является правильный выбор толщины пленки. Адсорбционные слои ПАВ в черных пленках приводят к резкой неоднородности в поперечном направлении по составу и характеру межмолекулярного взаимодействия. Наиболее точно молекулярное взаимодействие в черной пленке может быть описано с помощью трехслойпой модели, [уравнения (11.50)—(II.53)]. В эти формулы входят три константы, однако константы, учитывающие взаимодействие воды и углеводородной фазы с полярными группами, пока не могут быть рассчитаны. В углеводородных пленках такая модель может использоваться для оценки констант Гамакера полярных групп по известным значениям констант воды и углеводородной фазы. [c.137]

    В отличие от выпуклой поверхности жидкости, легко реализуемой в аэрозолях в форме шарообразных частиц различных размеров, вогнутая поверхность жидкости не может быть получена без участия стенок твердого тела. Поэтому в общем случае адсорбционное поле, создаваемое стенками мезопор адсорбента, оказывает влияние как на толщину адсорбционного слоя, так и на кривизну равновесного вогнутого мениска жидкости. Теория этого явления была опубликована Дерягиным в 1940 г. и почти 30 лет спустя, в 1967 г., де Бур и Брук-гоф смогли приближенно учесть влияние адсорбционного поля стенок пор на химический потенциал сорбированного вещества при выводе усовершенствованного уравнения Кельвина [5 — 8]. Автор [9, 10] делает попытку приближенного развития метода Дерягина, Брукгофа и де Бура путем дополнительного учета зависимости поверхностного натяжения от среднего, радиуса кривизны мениска жидкости. Рассмотрение капиллярного испарения ведется для эквивалентной модели адсорбента (эквивалентного модельного адсорбента) с цилиндрическими порами. [c.103]

    Взаимодействие адсорбированных молекул на поверхности раздела фаз, приводящее к их ассоциации, — явление широко распространенное. Ассоциация ионов или молекул ПАВ в присутствии воды имеет существенные особенности по сравнению с ассоциацией газов и паров. Ассоциация ПАВ обусловлена увеличением химического потенциала, выражающего тенденцию выхода компонента из вод1Юго окружения в жидкую нсевдофазу . Стремление к уменьшению свободной энергии приводит к определенной ориентации ассоциирова1шы.ч молекул, уменьшающей разность полярностей, в результате чего ассоциат покрыт оболочкой из гидрофильных групп и имеет определенный конечный фактор ассоциации. Эго одна из существенных особенностей ассоциации ПАВ. Вторая заключается в том, что ассоциация наступает при определенной критической концентрации раствора. Эти особенности позволяют построить следующую модель строения адсорбционного слоя ПАВ с учетом ассоциации. [c.91]

    Обработка экспериментальных данных на основе различных моделей ДЭС производится обычно с помощью ЭВМ. Она позволяет, как правило, добиться удовлетворительного описания адсорбционных или электрокинетических данных по отдельности [72, 77, 78], а также данных по двумерному поверхностному давлению на межфазной границе вода—воздух [79] или по взаимодействию заряженных поверхностей через прослойку электролита [80]. Однако к результатам такой обработки следует подходить с достаточной осторожностью. Так, численные расчеты, спецрально проведенные для различных моделей двойного слоя — моделей Гуи, Штерна, Грэма и Гельмгольца, показали [81], что хорошее описание ограниченного числа экспериментальных данных (относившихся в этом случае к титрованию окислов) может быть получено не единственным образом, т. е. с разными наборами параметров (имеющих в каждом случае физически разумную величину) для различных моделей ДЭС. [c.23]

    При испытаниях некоторых образцов масел с высокими моющими свойствами на двигателях ЯМЗ, ЗИЛ и АЗЛК было отмечено увеличение до 70% износа деталей ЦПГ при их относительно низкой загрязненности асфальтосмолистыми и углеродистыми отложениями по сравнению с обычными отечественными маслами М-12В и АС-8 (табл. 36, рис. 50). При малых нагрузках в парах трения (что характерно для двигателей старых моделей) и небольших концентрациях моющих присадок наличие последних играло положительную роль, улучшая смазывающее действие за счет образования поверхностно-активными веществами адсорбционных слоев на поверхностях раздела трущихся пар. Повышение тепловых и механических нагрузок на масляную пленку приводит к десорб- [c.111]

    С. Врунауэр, П. Эммет и Э. Теллер разработали теорию поли-молекулярной адсорбции, применив теоретическую модель адсорбции И. Лэнгмюра (однородная поверхность, отсутствие бокового взаимодействия адсорбированных молекул), но отказавпгась от постулированного в ней ограничения адсорбции только одним слоем и введя таким образом предположение о возможности образования второго и последующих адсорбционных слоев, характеризующихся одинаковой теплотой адсорбции, равной теплоте конденсации (метод БЭТ). [c.645]

    Параллельно развивалась и другая молекулярная модель адсорбционной системы — модель непокализованной адсорбции на однородной поверхности. Ван-дер-ваальсово взаимодействие молекул друг с другом в прилегающем к поверхности двухмерном мономолекулярном слое было учтено в уравнении двухмерного состояния этого слоя с помощью соответствующих вириальных коэффициентов [10, 14, 16, 121—124] и в виде двухмерного аналога уравнения состояния Ван-дер-Ваальса [1, 3, 6, 30, 120]. С помощью адсорбционной формулы Гиббса [125] уравнения двухмерного состояния преобразуются в соответствующие им уравнения изотермы адсорбции (см. гл, IV). Адсорбция во втором и последующих слоях была учтена в виде цепной ассоциации перпендикулярно поверхности [1, 30, 120]. Рассмотрена также модель нелокализованной адсорбции при цепной ассоциации адсорбированных молекул вдоль поверхности вместе с ван-дер-ваальсовым взаимодействием единичных молекул и их ассоциатов друг с другом в первом слое и цепной ассоциацией перпендикулярно поверхности [126]. [c.32]

    Вириальное уравнение в частной форме можно получить на основе модели двухмерного (мономолекулярного) адсорбционного слоя. В этом случае считается, что адсорбированные в количестве Г молекулы образуют на поверхности адсорбента двухмерный реальный газ. Для этого случая можно записать уравнение состояния такого двухмерного (мономолекулярного) слоя в форме следующего вири-ального разложения по степеням Г  [c.156]


Смотреть страницы где упоминается термин Адсорбционный слой, модель: [c.51]    [c.302]    [c.112]    [c.65]    [c.72]    [c.222]    [c.222]    [c.231]    [c.173]    [c.105]    [c.41]    [c.127]    [c.127]    [c.127]    [c.548]   
Современные аспекты электрохимии (1967) -- [ c.22 , c.204 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные слои

Адсорбционный слой



© 2024 chem21.info Реклама на сайте