Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамическое описание

    Распад электролитов на ионы увеличивает число частиц в растворе и тем самым обусловливает существенное различие разбавленных растворов электролитов и неэлектролитов. Наблюдаются рост осмотического давления, понижение давления паров растворителя над раствором (отклонения от закона Рауля), рост температуры кипения и замерзания и т. д. Поэтому растворы электролитов требуют отдельного термодинамического описания. [c.227]


    Термодинамическое описание адсорбционного равновесия дается уравнением изотермы адсорбции Гиббсах [c.86]

    ОСНОВЫ ТЕРМОДИНАМИЧЕСКОГО ОПИСАНИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ [c.44]

    При термодинамическом описании свойств реальных растворов (жидких или твердых) вместо концентрации, выраженной в молярных [c.271]

    Теоретически обоснованного уравнения состояния неидеальных систем, которое учитывало бы межмолекулярные силы взаимодействия и объем молекул при любых параметрах, не существует. На практике для описания неидеальных систем используют эмпирические уравнения, точность которых возрастает с увеличением числа постоянных в нем. Применение этих уравнений для термодинамических описаний неидеальных систем приводит к сложным формулам и трудоемким расчетам, [c.181]

    В научной литературе приводятся данные о термодинамических функциях для бинарных, реже - для тройных смесей, составленных из характерных для дисперсионной среды НДС компонентов. Однако надо иметь в виду, что дисперсионная среда может состоять из 2 - 3 компонентов только дпя модельных НДС, в то время как дисперсионная среда реальных НДС представляет собой многокомпонентный раствор, состоящий в отдельных случаях из сотен индивидуальных соединений. Поэтому термодинамическое описание таких растворов вряд ли возможно - можно лишь дать их общую феноменологическую характеристику [9]. [c.36]

    Для точной характеристики протяженности зародыша при его термодинамическом описании задают замкнутую геометрическую поверхность, закономерно изменяющую свою величину с изменением состояния системы в равновесных условиях. В качестве такой поверхности используют поверхность натяжения, к которой относят избытки экстенсивных свойств, получающиеся при мысленном продолжении внешней фазы до этой поверхности. Комплекс, получаемый объединением разделяющей поверхности со всей массой, заключенной внутри нее, называют зародышем новой фазы. Таким образом, реальную систему, состоящую из двух фаз и поверхностного слоя и внешней фазы (если внутренней фазы как таковой не существует), заменяют двумя телами - зародышем и средой - с четко определенной между ними границей [180]. [c.89]

    Подчеркивается доминирующая роль поверхностных явлений в дисперсных системах с высокоразвитой границей раздела фаз. Достаточно доступно излагается термодинамика гетерогенных систем по методу избытков термодинамических функций Гиббса. Важное место занимает раздел, в котором ставится вопрос о нетривиально-сти термодинамического описания микрогетерогенных систем, не являющихся в принципе равновесными, и о природе их устойчивости, с выделением роли флуктуаций, лиофилизации в результате адсорбции (по Ребиндеру), специфики поведения тонких слоев и проявления расклинивающего давления. [c.5]


    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ РАВНОВЕСИЙ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ [c.28]

    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ ХИМИЧЕСКИХ ПРОЦЕССОВ 2.1. Химическая переменная [c.35]

    Глубину протекания каждой реакции будем характеризовать своей химической переменной у. Для термодинамического описания обратимся к энергии Гиббса всей системы, которая не обязательно находится в равновесии. Тогда для dG можно написать [c.81]

    Аналогичным путем можно показать, что внутренняя энергия и энтальпия также не будут однородными функциями величин л,. Следовательно, из всех четырех термодинамических потенциалов только энергия Гиббса является однородной функцией относительно переменных л,, и именно ее чаще всего используют при термодинамическом описании смесей. [c.141]

    Термодинамическое описание поведения регулярных растворов обычно основывается на квазикристаллической модели жидкости, в которой предполагается, что каждая молекула находится в одном из узлов квазикристаллической решетки. В случае двухкомпонентного раствора в каждом узле этой решетки можно с вероятностью обнаружить молекулы первого типа, с вероятностью А 2 — молекулы второго типа Каждая молекула в растворе обычно окружена несколькими (Z) со- [c.207]

    Существенную роль в развитии термодинамического описания фазовых равновесий сыграла модель регулярного раствора и ее последующие модификации. Эта модель основана на представлении о независимости энергии системы от характера распределения атомов. [c.327]

    При термодинамическом описании свойств растворов электролитов широко используется метод активностей, введенный Г. Льюисом (1908 г.). Идея заключается в следуюш,ем. Электростатическое взаимодействие между ионами приводит к связыванию ионов (например, замедляет их движение) и к изменению свойств раствора в направлении, аналогичном уменьшению степени диссоциации слабых электролитов. Создастся впечатление, что ионов меньше, чем их есть на самом деле. По мере увеличения концентрации электролита эти эффекты усиливаются. Поэтому вместо концентрации вводится активность, т. е. кажущаяся, или эффективная, концентрация. Подстановка активности вместо концентрации в термодинамические уравнения, действительные для идеальных систем, делает их применимыми к рассматриваемым растворам. [c.200]

    Уравнение Гиббса ] = /(а,с) не дает однозначного выражения для функции Г = /(с), т. е. для изотермы адсорбции, так как термодинамическое описание системы, включающей поверхность раздела, содержит не менее 3 переменных (в данном случае о, с. Г) по условию равновесия, выражаемому уравнением Гиббса. Для исключения одной из независимых переменных (например, о) необходимо наложить дополнительное условие, которое может быть получено при помощи молекулярной теории. Таким условием является, например, то или иное представление [c.108]

    Приведите примеры гетерогенных химических равновесий и расскажите об их термодинамическом описании. Когда концентрации твердых веществ входят в константу равновесия гетерогенной химической реакции  [c.300]

    П.1. Термодинамическое описание равновесий в растворах электролитов [c.33]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]

    Для термодинамического описания поведения системы воспользуйтесь правилом фаз Гиббса [2, с. 14—15, 19—20, 111— 115]. Можно ли определить по полученным температурным характеристикам раствора степень диссоциации соли [2, с. 279—285]  [c.106]

    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ ПРОЦЕССА В МАКРОСКОПИЧЕСКОЙ СИСТЕМЕ [c.178]


    Основные законы термодинамики являются общими для всех макроскопических систем независимо от природы образующих их частиц и характера взаимодействия между ними. Поэтому термодинамическому описанию химических систем и процессов (химической термодинамике) должно предшествовать изложение общих принципов термодинамики и связанных с ними основных термодинамических понятий и соотношений. [c.204]

    Теории растворов сильных электролитов. Для термодинамического описания растворов электролитов необходимо знать внутреннюю- энергию этих систем. Она может быть найдена, если известны знергия взаимодействия между ионами и функция их радиального распределения в растворе. [c.233]

    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ ХИМИЧЕСКИХ ПРОЦЕССОВ [c.17]

    V. 1. ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ СМЕСИ ГАЗОВ V. 1.1. Парциальные молярные величины [c.226]

    При формальном термодинамическом описании ионообменного равновесия эти факторы могут быть учтены введением в [c.678]

    Эти постулаты представляются достаточно очевидными утверждениями, но они необходимы для построения строгого математического аппарата термодинамики. Этот аппарат оказался настолько общим и полезным для физики и химии, что в начале XX в. он был подвергнут всестороннему физическому и логическому анализу, устранившему ряд кажущихся противоречий и позволившему в значительной степени придать ясный физический смысл математическому аппарату термодинамического описания свойств вещества, а саму термодинамику превратил в общую теорию макроскопических свойств равновесных систем. [c.12]

    В электрохимической кинетике описание электродных процессов неразрывно связано с представлениями о строении двойного электрического слоя. Течение реакции на электроде, например, сопровождается прохождением заряженной частицы (иона или электрона) через двойной электрический слой либо из объема раствора к электроду, либо в обратном направлении. При этом заряженная частица будет испытывать влияние поля двойного слоя. В случае же термодинамического описания процесса важно не само строение двойного электрического слоя, а общий скачок потенциала, который может быть одним и тем же при разном строении двойного элект-рического слоя. [c.230]

    Поскольку для большинства реальных систем уравнение состояния в явном виде неизвестно, для термодинамического описания системы пользуются так называемыми функциями состояния, которые могут быть однозначно определены через параметры р, V, Т. Значения этих функций не зависят от характера процесса, приводящего систему в данное состояние. [c.203]

    При термодинамическом описании предполагают, что система находится в относительном покое ( кин = 0) и воздействие внешних полей пренебрежимо мало ( пот = 0). Тогда полная энергия системы определяется запасом ее внутренней энергии Е=0). Последняя складывается из кинетической энергии поступательного и вращательного молекулярного движения, энергии притяжения и отталкивания частиц, энергии электронного возбуждения, энергии межъядерного и внутриядерного взаимодействия и т. п. Количественный учет всех составляющих внутренней энергии невозможен, но для термодинамического анализа систем в этом нет необходимости, так как достаточно знать лишь изменение внутренней энергии при переходе из одного состояния в другое, а не ее абсолютные величины в этих состояниях. В соответствии с законом сохранения энергии, выражающим первое начало термодинамики, общий запас внутренней энергии системы остается постоянным, если отсутствует тепловой обмен с окружающей средой. В ходе процессов, протекающих в изолированной системе, возможно лишь перераспределение внутренней энергии между отдельными составляющими системы. [c.203]

    Из сравнения выражений (VII.2) и (VII.4) следует, что энтальпия как функция состояния эквивалентна внутренней энергии при термодинамическом описании процессов, протекающих при постоянном давлении. [c.204]

    Зная термодинамическое описание поверхностного слоя, его строение, природу действующих сил и динамику процесса, мы можем приступить к изучению собственно теорий адсорбции, имеющих целью нахождение зависимости х (Т, р). [c.136]

    Действительно, термодинамическое описание поверхностного слоя (см. раздел V. 1) для системы конденсированная фаза (адсорбент—адсорбат)—пар приводит к уравнению [c.161]

    Основные и наиболее характерные свойства дисперсных систем связаны со свойствами вещества в поверхностных слоях на границе раздела фаз. Площадь межфазной поверхности в термодинамическом описании играет роль параметра состояния системы. За обобщенную силу, сопряженную с этим параметром, принимают удельную поверхностную энергию (коэффициент поверхностного натяжения) о. Тогда работа dW по увеличению поверхности (при Т = onst и У = onst) на dS равна [c.28]

    Для расчета величин ц,, как это следует из (1.37), к системе с заданным содержанием всех компонентов необходимо добавить некоторое, желательно очень малое, количество /-го компонента, определить изменение АС в этом процессе и рассчитать предел отношения АС1Ап1 при Дл, 0. Возникает вопрос об источнике /-го компонента. Вообще говоря, У-й компонент может находиться вне системы в любом состоянии, в котором он может быть, при любой температуре или давлении, в реальном или гипотетическом состоянии, а также в разнообразной химической форме, например, источником метана может служить этан и т. д. Но так можно поступать лишь до тех пор, пока не учитывают химические превращения вешеств. При термодинамическом описании химических процессов нужно выбрать единый для всех веществ (исходных и конечных) нуль отсчета, чтобы учитывать изменения энергии, связанные с химическими превращениями. Поэтому для расчета величин химических потенциалов используют введенные ранее стандартные состояния и стандартные условия. [c.55]

    Вид фазовых диафамм с неофаниченно смешивающимися твердыми компонентами в жидкой и твердой фазах полностью аналогичен виду диаграмм, описывающих равновесие жидкость-пар. Термодинамическое описание систем жидкость — твердое совпадает с описанием систем жидкость — пар. Аналогично правилам Гиббса—Коновалова формулируются правила Гиббса—Розебума для описания равновесий в системах твердый раствор— жидкий раствор. [c.204]

    Смесь веществ, участвующих в химическом процессе, практически всегда содержит многоко.мпонентные фазы — растворы. Главная особенность термодинамического описания таких систем связана с использованием парциальных молярных величин, относящихся к отдельным компонентам (см. 9.5). Поэтому для применения основных принципов термодинамики к растворам и процессам с их участием необходимо прежде всего установить термодинамические соотношения между парциальными молярными величинами. [c.227]

    Экстенсивные свойства чистого вещества определяются количеством, температурой и давлением, а интенсивные — температурой и давлением. На первый взгляд кажется, что то же самое можно сказать о растворе. Тогда любое экстенсивное свойство раствора рассчитывалось бы аддитивно, из соответствующих свойств чистых компонентов раствора и их количеств. Напрнмер, при постоянных р я Т общий объем раствора должен бы равняться сумме + 2 а + . в которой 12 1 и П2У2 и т. д. соответственно количества молей и мольные объемы компонентов. Но в действительности такие расчеты не согласуются с опытом , и мы вынуждены считать, что для растворов экстенсивные свойства определяются давлением, температурой и количеством каждой составной части, а интенсивные — давлением, температурой и составом, т. е. относительным количеством компонентов. В связи с этим для термодинамического описания растворов вводится понятие парциального мольного свойства. [c.71]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]


Смотреть страницы где упоминается термин Термодинамическое описание: [c.38]    [c.94]   
Смотреть главы в:

Физика и химия твердого состояния -> Термодинамическое описание




ПОИСК







© 2025 chem21.info Реклама на сайте