Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористые субстраты

    Вначале дисперсии ПВА применялись в основном для склеивания пористых субстратов бумаги, картона, тканей, дерева и т. п. С появлением дисперсий сополимеров ВА перечень склеиваемых материалов увеличился. Так, дисперсия сополимера ВА с ДБМ прочно склеивает бумагу и картон с пластифицированным поливинилхлоридом, а дисперсии сополимеров ВА с этиленом используются для приклеивания поливинилхлоридной плитки, линолеума, релина [6, с. 30], склеивания деталей обуви [6, с. 38]. [c.157]


    При нанесении на покрытый адгезивом корд сырой резиновой смеси происходит ее внедрение в глубь нитей. Резина заполняет трещины и пустоты в слое адгезива, разрывает пленку адгезива между элементарными волокнами и в результате заклинивается в нитях, проникнув на большую глубину (рис. IV.8, см. вклейку). При изучении механизма склеивания пористых субстратов естественно было предположить, что адгезионная прочность зависит главным образом от механических эффектов. Эта точка зрения высказывалась еще в 20-х годах [29] и была широко известна как механическая теория адгезии. Согласно механической теории адгезионная прочность обусловлена проникновением клея в поры и заклиниванием клеевой пленки в материале. В работах Мак-Бена было показано, что когда поры древесины закрыты, она теряет способность склеиваться. Было также обнаружено, что желатин имеет низкую адгезию к гладкой металлической поверхности, но хорошо склеивает пористую. Большое внимание Мак-Бен уделял прочностным свойствам адгезива, так как именно они обеспечивают, согласно механической теории, прочное соединение склеиваемых поверхностей. Преувеличение роли механического эффекта даже привело к отрицательным последствиям [23, 32]. Так, стремясь достичь глубокого проникновения клея в древесину, применяли клей низкой вязкости, склеивание производили при относительно высоких температурах и давлениях. Это приводило к чрезмерному впитыванию клея в субстрат и выдавливанию из зазора. Получались так называемые голодные склейки с несплошной клеевой пленкой и низкой адгезионной прочностью. [c.165]

    Так как число связей, образующихся за счет межмолекулярного взаимодействия, пропорционально поверхности контакта расплава и стеклообразного пористого субстрата, то Ki в уравне- [c.133]

    Коснемся особенностей строения некоторых пористых субстратов. Основным элементом древесины хвойных пород являются полые волокна, состоящие из вытянутых в длину клеток [48]. Радиальный размер волокон составляет 20—40 мкм, толщина стенок — 2—8 мкм, а длина колеблется в пределах 2— 50 мм. [c.105]

    На этом закончим рассмотрение пропитки пористых субстратов и уделим некоторое внимание другим аспектам проблемы формирования контакта при использовании жидких адгезивов. Большой интерес представляет стенание адгезива с поверхности субстрата, а также захват адгезива движущимся субстратом. [c.118]

    Для пористых субстратов вопрос о характере разрушения формально снимается, поскольку разрушение системы всегда сопровождается разрушением соединяемых материалов, т. е. имеет когезионный характер. Однако опыт показывает, что анализ особенностей разрушения подобных систем может дать весьма важную информацию. Рассмотрим в качестве примера характер разрушения системы корд — адгезив — резина. В этой системе адгезив — пленка пропиточного состава соединяет два различных субстрата пористый — кордные волокна и монолитный — резину. Когда в расслоившейся шине кордные нити оказываются покрытыми резиной (рис. IV.2, см. вклейку), сомнений в характере расслоения не возникает — слабым звеном оказывается резина. Но нередко такое расслоение шин, при котором кордная нить оказывается после расслоения совершенно чистой — лишенный резины (рис. IV.3, см. вклейку), и очень трудно установить местоположение зоны разрыва. Возможно, что пленка адгезива отслоилась полностью от резины, т. е. расслоение имеет адгезионный характер, и граница адгезива с резиной является слабой зоной системы. Можно предположить, что пленка адгезива, покрывающая наружные волокна корда, отслаивается от волокон вместе с резиной. Такой случай расслоения также следует считать адгезионным, но слабой зоной в системе является граница адгезив — волокно. И наконец, вполне вероятно, что расслоение сопровождается разрушением наружной пленки адгезива часть ее остается на волокнах корда, часть отделяется вместе с резиной это пример когезионного разрушения адгезива. Резина, внедрившаяся между элементарными волокнами нити, не выдергивается при расслоении, а отрывается у основания (рис. IV.4, а, см. вклейку). Случаи вытаскивания заклинившихся языков резины чрезвычайно редки и встречаются иногда при неглубоком затекании резины (рис. IV.4, б). Применив люминесцентный анализ в сочетании с микроскопическим исследованием поперечных срезов, можно с большой достоверностью установить характер разрушения резинокордных систем. В частности, было обнаружено, что, когда расслоение шины сопровождается оголением нитей корда, характер разрушения может существенно различаться [14, 15]. [c.163]


    Несомненно, механический эффект оказывает определенное влияние, особенно в случае пористых субстратов. Возможно, что для субстратов, имеюш,их гладкую поверхность, некоторое значение имеют эффекты механического заклинивания, тем более, что любая гладкая поверхность имеет развитый рельеф (см. гл. III). Однако роль механического эффекта в конечном счете второстепенна [8], и решающее значение имеет все-таки специфическое взаимодействие между адгезивом и субстратом. [c.168]

    Однако такой традиционный подход для адгезионных соединений не является исчерпывающим. Существование границы раздела в адгезионных соединениях и молекулярных сил взаимодействия между соединяемыми материалами вносит специфику в поведение адгезионных соединений. С одной стороны, это проявляется в хорошо известном факте, что даже в случае шероховатых и пористых субстратов (когда проявляется механический эффект) прочность адгезионного соединения может быть невысокой нри отсутствии интенсивного молекулярного взаимодействия адгезива с субстратом, и, наоборот, адгезионная прочность может быть чрезвычайно высокой и при отсутствии механического заклинивания и зацепления адгезива в порах и неровностях поверхности субстрата, если имеется интенсивное межмолекулярное взаимодействие соединяемых материалов. С другой стороны, молекулярное взаимодействие адгезива с субстратом приводит к существенному изменению механизма деформации адгезива, выявляет скрытые потенциальные возможности полимера и таким образом воздействует на прочность адгезионного соединения. Несомненно, исчерпывающий анализ проблем механики адгезионных соедине ний и основ адгезионной прочности должен служить темой специального исследования. [c.204]

    Одним из распространенных методов подготовки поверхности субстрата является создание искусственного микрорельефа, придание шероховатости гладкой поверхности. В шинной, обувной промышленности, в различных отраслях резинотехнической промышленности важнейшей технологической операцией для достижения необходимой прочности связп яв.ляется предварительная механическая обработка — шероховка поверхности резины. Механическую обработку поверхности проводят также нри склеивании металлов и нанесении на поверхность металлов покрытий. Различными способами — шлифованием, зашкуриванием, онеско-струиванием, травлением можно значительно повысить показатель доступности поверхности и, таким образом, адгезионную прочность. Увеличивая шероховатость поверхности субстрата, можно иногда достичь лучшего растекания жидкого адгезива. Но очевидно, что значение механического заклинивания, даже нри склеивании пористых субстратов, далеко не самое главное. Если увеличение площади соприкосновения адгезива с субстратом пе сопровождается изменением природы поверхности и не отражается на характере сил, возникающих ме кду молекулами адгезива и субстрата, повышение адгезии может быть относительно невелико. Механическая обработка поверхности субстрата ока- [c.370]

    Реактивация 1) При нагревании 2) Действием растворителя 3) Повторным нанесением клея Такая же, как при склеивании без реактивации Клеи на растворителях или клеи-расплавы Реактивация при нагревании имеет преимущества обеспечивается более высокая прочность, не требуются пористые субстраты. [c.102]

    Ограничения Точное соблюдение открытой выдержки, главным образом при непористых субстратах субстраты не должны растворяться в носителе Необходим хотя бы один пористый субстрат некоторые типы требуют высокого давления неморозостойки Часто плохо работают при неравномерном отрыве и динамической нагрузке низкая текучесть сложности при приготовлении клеев (двух- и многокомпонентных) иногда малый срок хранения [c.103]

    Нитрат целлюлозы (целлулоид) очень хорошо склеивается обычными растворителями или клеями на растворителях, содержащими растворенный целлулоид, поливинилацетат или акрилаты. Этими клеями (главным образом с большим сухим остатком) можно склеивать целлулоид и с другими, в основном с пористыми, субстратами. [c.179]

    Декоративные слоистые пластики на фенольных смолах при склеивании образуют соединения не очень высокой прочности, однако их можно приклеивать к разнообразным субстратам и на большие поверхности. На древесину декоративные слоистые пластики можно наклеивать мочевиноформальдегидными или поливинилацетатными клеями. В особых случаях используются фенольные клеи, иногда каучуковые, модифицированные изоцианатами. Все эти клеи водостойки. Для наклеивания на полистирольные и поливинилхлоридные пенопласты используют эпоксидные или фенольные клеи. Для склеивания небольших поверхностей применяют дисперсии поливинилацетата (с высоким содержанием сухого остатка), в основном для пенопластов с открытыми порами или для приклеивания к пористым субстратам. [c.181]

    Основное применение водных лакокрасочных материалов -окраска стен из пористых субстратов типа кирпича, камня, бетонов на строительных объектах общего назначения. В последнее время [c.10]


    Таким образом, разделение газовых смесей при помощи мембранных методов основывается на том, что проницаемости различных компонентов газовой смеси через мембрану оказываются различными. Для разделения применяются асимметричные и ком1Юзиционные мембраны, состоящие из тонкого селективного слоя и пористого субстрата (подлоткки). Как и для проведения жидкофазных процессов, для газового разделения применяются аппараты с плоскими мембранными элементами, с трубчатыми мембранными элементами, с рулонными мембранными элементами, а также аппараты с полыми волокнами. [c.46]

    Типичными пористыми субстратами являются также бумага и кожа. Плотность бумаги 0,5—0,8 г/см , а плотность целлюлозных волокон — основы бумаги — около 1,5 г/см . Бумага пронизана сложной системой искривленных и скрещенных каналов и капилляров размером от 0,1 до 4 мкм, а также пустотами [50—52]. Кожа представляет собой систему взаимно переплетенных кол-лагеновых волокон [53, с. 13]. Структурными единицами коллаге-нового волокна являются фибриллы диаметром 0,1—0,5 мкм. Сами волокна состоят из большого числа фибрилл и имеют диаметр 1—3 мкм. Пористость кожи очень велика [54) полости занимают 50—60% общего объема. Ниже приведены [54, 55] значения истинной площади поверхности некоторых материалов (в м г)  [c.106]

    Одновременно с развитием представлений о роли механического фактора возникли и другие взгляды на природу процесса склеивания. Еще в работах Бехгольда и Неймана [30] был сделан вывод о том, что кроме затекания клея в поры и капилляры важную роль играет взаимодействие клея с материалом подложки. Силы специфического взаимодействия клея с поверхностью в капиллярах Бехгольд и Нейман назвали адгезионными и впервые при изучении склеивания ввели представление о специфическом молекулярном сцеплении — адгезии. Представление о специфической адгезии было затем развито в работах других авторов и привело к созданию адсорбционной теории адгезии (см. гл. I). Роль специфического взаимодействия при склеивании пористых субстратов подчеркивали различные исследователи [23, 24, 31, 32]. Было отмечено [32], что при склеивании древесины пленка клея, несмотря на значительную усадку, прочно держится на внутренних стенках пор, а сила сцепления оказывается настолько значительной, что древесина разрушается при попытке отделить пленку. [c.165]

    Механический эффект без достаточно интенсивного взаимодействия адгезива с субстратом не может обеспечить высокой прочности клеевого соединения. Так, прочность склеивания кожи гуттаперчевым клеем, несмотря на его глубокое внедрение в поры субстрата, оказалась невысокой [24], и при расслаивании клеевые усики легко вытаскивались из пор субстрата. Обработка кожи канифолью приводит к резкому повышению адгезионной прочности, хотя глубина затекания клея при этом не изменяется [24]. Характерные результаты получены при изучении роли механического эффекта в резинокордной системе (табл. IV. ). Когда в качестве адгезива применяли сравнительно инертный бутадиен-стирольный латекс СКС-ЗОШХП, прочность связи нити полиамидного корда с резиной оказывалась значительно выше, чем прочность связи полиамидного моноволокна того же диаметра, что и нить. Следовательно, проявление механического эффекта в случае пористого субстрата (нити) было явным. Но стоило применить в качестве адгезива вместо бутадиен-стирольного латекса дивиниловый карбоксилсодержащий, как картина резко изме- [c.166]

    Особенно целесообразна модификация при склеивании пористых субстратов, когда следует предотвратить ускоренную диффузию отвердителя в приповерхностные слои соединяемых материалов и их преждевременное упрочнение. Если на одну из древесных поверхностей нанести акрилатный компонент с добавкой бензоилпероксида, а на другую — такой же компонент с добавкой 5% 4,4 -мeтилeнби (N,N-димeтилaнилинa), то по сравнению с традиционной технологией склеивания сопротивление соединения сдвигу увеличивается на 50%, достигая 7,7 МПа [129]. Аналогичный эффект, но в еще большей степени, проявляется в случае, когда акрилатный адгезив содержит высокомолекулярную добавку, способствующую дальнейшему росту коэффициента его диффузии. Так, введение в клей, отверждаемый после контактирования раздельных слоев 9-бо-рабицикло [3,3,1] нонаном, собственного полимера (полиметил-метакрилата) и хлорсульфонированного полиэтилена обеспечивает прочность адгезионных соединений стали 24 МПа [126]. Наиболее часто в качестве подобных добавок используют бута-диен-нитрильные эластомеры [129, 145, 149]. Диспергируя их в акрилатных адгезивах раздельного нанесения, получают соединения стали, которые при толщине клеевого слоя 0,05 мм характеризуются после отверждения при комнатной температуре в течение 5 мин сопротивлением сдвигу 11 МПа и сопротивлением отслаиванию 7 кН/м [149]. Подобно другим составам аналогичной технологии склеивания, такой адгезив не [c.37]


Смотреть страницы где упоминается термин Пористые субстраты: [c.244]    [c.79]    [c.174]    [c.37]   
Основы адгезии полимеров (1974) -- [ c.105 , c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2025 chem21.info Реклама на сайте