Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Приповерхностные слои

    Для исследования изменений структуры водородных связей в приповерхностных слоях воды необходимо проанализировать, ориентационные характеристики ее молекул. Ориентация молекул может быть задана углами Эйлера. Однако для большей наглядности целесообразно рассмотреть ориентацию в пространстве вектора дипольного момента молекулы воды и вектора й, нормального к плоскости, в которой расположены атомы молекулы. Введем параметр порядка [c.125]


    В случае катализаторов-металлов установлено, что их поверхность может легко перестраиваться под воздействием реакционной среды, стремясь к минимуму свободной поверхностной энергии [12], часто наблюдается изменение поверхности металла в результате реконструктивной хемосорбции участников реакции [13, 14]. Кроме того, почти всегда изменяется состав поверхностного слоя вследствие растворения компонентов реакционной смеси. Количество поглощенных компонентов часто во много раз превышает монослойное покрытие [15]. В работах [16, 17] описано медленное изменение скорости окисления этилена на серебре, связанное, по мнению авторов, с диффузией кислорода в приповерхностный слой катализатора. Аналогичное явление обнаружено и при протекании реакции каталитического окисления водорода на пленках серебра [18]. Все эти факторы приводят к изменению теплот сорбций участников реакции на поверхности металла и энергий активации элементарных реакций и как результат — к изменениям общей каталитической активности и селективности реакции. [c.12]

    Наряду с положительными свойствами гальванические покрытия имеют недостатки наводороживание основы при нанесении покрытия наличие водорода в изделии вызывает водородную хрупкость, снижающую как длительную, так и циклическую прочность. Влияние гальванопокрытий хромом, никелем, медью на выносливость стали в воздухе в значительной степени связано с появлением в приповерхностном слое остаточных напряжений растяжения, которые при воздействии коррозионной среды вследствие нарушения сплошности этих покрытий, являющихся катодными по отношению к стали, усиливают анодное растворение стали. Остаточные напряжения растяжения — не единственный фактор, вызывающий снижение усталостной прочности стали. Снижение усталостной прочности стали можно объяснить еще и наводороживанием стали при гальваническом нанесении покрытий. Обычно наводороживание стремятся уменьшить последующей термической обработкой. Покрытие, являясь эффективным барьером, затрудняет процесс обезводороживания изделий. Новым направлением является легирование покрытий титаном, поглощающим водород при последующей термообработке. [c.81]

    Применительно к биологическим макромолекулам обсуждается вопрос о коллективном действии полярных групп на структуру воды. В исследованных случаях изменений структуры воды, в первом приближении, могут быть представлены как сумма локальных изменений вблизи отдельных групп. В отличие от молекул, в двухмерной решетке активных центров эффекты топографии выходят за первый план, предопределяя, например, знак изменений плотности приповерхностных слоев. [c.6]


    Ориентационные характеристики молекул воды в мембранной фазе рассматривались относительно направления, параллельного осям стержней, ограничивающих движение центров масс молекул воды. Результаты расчета приведены в табл. 7.4 для приповерхностного слоя толщиной 0,075 нм. Как видно из этих данных, в модели мембранной фазы воды также наблюдается ориентационная упорядоченность ее молекул. [c.126]

    Поверхность фосфолипидных бислоев обладает особенностью (отличающей ее от обычных коллоидных структур), которая в значительной степени осложняет теоретический анализ межфазных явлений в системе. Эта особенность связана с тем, что об-пасть полярных головок проницаема для молекул воды и ионов электролита [423, 424]. В этой области перемешаны как источники электрических полей, принадлежащих самой поверхности, так и заряды ионов и электрические диполи молекул воды. В таких системах трудно выделить четкую границу раздела между фосфолипидной фазой и электролитом. Поверхностные источники электрических полей, по существу, распределены в некотором приповерхностном слое. Термин поверхностные в данном случае означает, что они, обладая некоторой мобильностью в этом слое, сохраняют химическую связь с определенными группами липидной поверхности. Учет этой особенности дает воз- [c.149]

    Поверхность реального фосфолипидного бислоя представляет собой довольно сложное образование. Граничащие с электролитом полярные головки фосфолипидных молекул образуют поверхностный слой (толщиной 0,6—1 нм), заполненный электрическими зарядами и диполями. Часть -этих зарядов и диполей принадлежит самим головкам, другую часть составляют молекулы воды и ионы электролита. Поэтому термины поверхностные заряды , поверхностные диполи в значительной степени условны. Заряды и диполи реальных фосфолипидных поверхностей распределены в приповерхностном слое. Происхождение такого распределения является результатом рыхлости поверхности, позволяющей молекулам воды и ионам электролита проникать в глубь поверхности. [c.150]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Во-вторых, если активные центры состоят из химически различных компонентов, то сформированная поверхность работающего катализатора должна представлять собой систему типа твердого раствора этих компонентов. В связи с процессами диффузионного обмена стационарный состав приповерхностных слоев катализатора также будет отличаться от состава термодинамически устойчивой фазы. [c.302]

    Гидродинамический режим пассивной фазы принято считать близким к идеальному вытеснению отклонения от идеальности являются, главным образом, следствием различия скоростей подъема пузырей разного размера. Более сложен вопрос о перемешивании потока в активной фазе. В плотном слое твердых частиц, при относительно малых линейных скоростях потока, турбулентные пульсации не играют заметной роли и перемешивание потока может быть следствием только взаимодействия потока с подвижными твердыми частицами. Механизм перемешивания газа в активной фазе кипящего слоя состоит в увлечении твердыми частицами молекул реагентов, находящихся у поверхности частиц и внутри пор и адсорбированных на поверхности. Если основная часть переносимого вещества адсорбирована на поверхности частиц, константа равновесия между ядром потока и приповерхностным слоем связана с удельной поверхностью частиц о и сорбционными свойствами реагентов соотношением [c.311]

    Общая система уравнений, отнесенная к единице площади поперечного сечения реактора, для процесса в кипящем слое, тормозимого как межфазной, так и внешней диффузией к частицам катализатора, включает дифференциальные уравнения переноса вещества из газовых пузырей через поток газа в плотном слое к приповерхностному слою  [c.312]


    Решение. На границе приповерхностного слоя и поверхности таблетки концентрация постоянна и равна с . Концентрация в массе ра(твора в течение рассматриваемого времени тоже постоянна, по )Тому поток вещества через приповерхностный слон можно считать стг.ционарным и [c.407]

    На более высоких масштабных уровнях при наличии в системе кластеров вместо Е, в формулу (3) необходимо подставлять вероятностно-усредненное значение потенциалов парного взаимодействия частиц, принадлежащих приповерхностному слою кластера [24]. [c.18]

    В механизме гетерогенных реакций окисления важную роль играет адсорбция реагентов на поверхности контакта. На металлах кислород сорбируется очень быстро с последующим более медленным прониканием в приповерхностный слой. Неблагородные металлы дают в результате оксиды, а для серебра процесс ограничивает- я хемосорбцией с глубоким изменением свойств приповерхностного слоя. Считают, что кислород сорбируется на контакте без диссоциации или с диссоциацией молекулы, причем металл поставляет требуемые электроны и переводит адсорбированный кислород в состояние ион-радикала  [c.412]

    Область III на рис. 3.6 соответствует большим значениям модуля Тиле О 3). Асимптотическое решение в данной области Г] 3/ф8- При больших ф8 концентрация в центре зерна стремится к О, т. е. реакция внутри зерна протекает в небольшом приповерхностном слое. Эта область носит название внутридиффузион-ной. Область II — переходная область между кинетической и внутридиффузионной. [c.160]

    Из рассмотренных примеров видно, что общим в кинетике окисления является тормозящее влияние продуктов окисления, адсорбирующихся на поверхности сильнее, чем исходные углеводороды. Для кислорода не наблюдается такого влияния, что подтверждает механизм хемосорбции углеводорода не на активных центрах, а на центрах, уже сорбировавших кислород. В то же время порядок реакции по кислороду и углеводороду может быть разным и зависящим от соотношения реагентов, окислительно-восстановительных свойств среды, а, значит, и от степени окисленности металла или оксида в приповерхностном слое. Энергия активации при гетерогенном окислении олефинов составляет 63—84 кДж/моль (15— 20 ккал/моль), а для ароматических соединений около 105 кДж/моль ( 25 ккал/моль). [c.415]

    Воздействие реакционной смеси на свойства катализатора должно учитываться в кинетических зависимостях реакций гетерогенного катализа. В подавляющем большинстве случаев при выводе кинетических уравнений молчаливо предполагается неизменность твердого катализатора и независимость его свойств от состава реакционной смеси и ее воздействия на катализатор. В действительности же под воздействием реакционной среды часто изменяется химический состав катализатора, что может приводить к фазовому превращению активного компонента, изменению объемного состава катализатора в приповерхностном слое. Вот почему при изменении состава и температуры реакционной смеси скорость реакции меняется также и в результате изменения свойств катализатора. Зависимость скорости реакции от концентрации реагентов должна поэтому включать две функции, одна из которых f[ (t) 6(с( ))] ха- [c.13]

    Полярограммы могут быть искажены за счет полярографических максимумов — резкого возрастания тока выше предельного значения его с последующим спадом. Причины возникновения максимумов различны, и могут быть связаны с неравномерной поляризацией ртутной капли и тангенциальным движением ее поверхности, что приводит к дополнительному перемешиванию раствора. Такого рода максимумы можно устранить введением в полярографируемый раствор ПАВ красителей (метиловый красный, фуксин и др.), высокомолекулярных соединений (агар-агар, желатин). ПАВ адсорбируются на поверхности ртутной капли, изменяют ее поверхностное натяжение, устраняя неравномерное движение приповерхностных слоев. Кроме того на полярограммах возникают кислородные максимумы растворенный в анализируемом растворе кислород восстанавливается на ртутном электроде в две стадии  [c.142]

    В результате изменения значений параметров реакционной смеси нестационарными могут оказаться концентрации промежуточных образований каталитического цикла и состояния приповерхностного слоя катализатора, вызывающие изменения констант скорости элементарных стадий. Поверхностные концентрации изменяются по мере протекания каталитического процесса, т. е. со скоростью, близкой по порядку к скорости реакции. Для достаточно быстрых реакций, представляющих практический интерес, масштаб времени изменения поверхностных концентраций М/ лежит большей частью в интервале 10 —10 с. При изменении свойств катализатора, связанных с изменением строения поверхности и состава приповерхностного слоя, приближение к стационарному состоянию обычно включает стадии, отличные от стадий каталитической реакции. Поэтому в большинстве случаев приближение к стационарному состоянию осуществляется намного медленнее протекания каталитической реакции. В дальнейшем через М, будем обозначать характерное время установления свойств катализатора. Величину масштаба времени нестационарного процесса на поверхности катализатора М можно количественно оценить, например, таким выражением  [c.16]

    При изменении свойств катализатора, связанных с изменением строения поверхности и состава приповерхностного слоя, приближение к стационарному состоянию обычно включает стадии, отличные от стадий каталитической реакции. Поэтому в большинстве случаев приближение к стационарному состоянию осуществляется медленнее протекания каталитической реакции. [c.17]

    В. Излучательная способность проводников. В результате главным образом сильного взаимодействия фотонов со свободными электронами коэффициент поглощения в инфракрасном диапазоне проводников очень велик это означает, что только тонкий приповерхностный слой проводящего тела участвует в радиационном обмене с окружением. В соответствии с этим их отражательная способность высока, а излучательная способность (которая равна поглощательной способности) низка. (Большие значения коэффициента поглощения имеют место при низкой поглощательной способности, об этом см. выше). [c.194]

    Нестационарные состояния приповерхностного слоя катализатора, вызывающие изменения констант скорости элементарных этапов. Эти изменения связаны с побочными взаимодействиями, не входящими в каталитический цикл. Как правило, энергии активации этих взаимодействий достаточно велики, а скорости малы, поэтому время релаксации побочных взаимодействий много больше времени релаксации в каталитическом цикле. В обоих случаях нестационарность определяется отклонением свойств катализатора от стационарных характеристик, отвечающих усредненным по времени значениям параметров газовой фазы. [c.28]

    Во многих каталитических системах наблюдается диффузия какого-нибудь промежуточного вещества в приповерхностные слои катализатора. Этот эффект в предположении быстрой диффузии учитывается в (4.22) коэффициентом и, который равен отношению максимально возможного количества адсорбированных молекул вещества Вг к общему количеству поверхностных активных центров. Если диффузионный процесс протекает относительно медленно, а так чаще всего и бывает, то система (4.22) дополняется соответствующим дифференциальным уравнением с частными производными, которые учитывают конечную скорость диффузии компонента В. Однако представляется очевидным, что каких-либо новых качественных результатов это не дает. [c.118]

    В турбулентных пограничных слоях в отличие от ламинарных существуют два характерных масштаба длины толщина пограничного слоя S и толщина приповерхностного слоя , где [c.116]

    Немало бед наносит нефть и самому морю. Литр разлитых нефтепродуктов лишает кислорода, столь необходимого рыбам и другим обитателям океана, примерно 40 тысяч литров воды. Или, считая по-другому, тонна нефти может загрязнить около 12 квадратных километров поверхности океана, погубить в нем все живое. Ведь планктон, молодь рыбы и многие взрослые обитатели океана большую часть жизни проводят именно в приповерхностных слоях воды, где встреча с нефтью особенно вероятна. [c.144]

    Известно, что характер протекания ряда важных физических и химических процессов на границе раздела фаз в жидкостях отличается от наблюдаемого в объеме, вне действия поверхностных сил. Эти отличия, как показывают экспериментальные исследования [42], в значительной степени обусловлены изменением структурных характеристик жидкостей в приповерхностной области. Вместе с тем однозначная интерпретация экспериментальных данных о свойствах жидкостей вблизи границы часто осложняется влиянием неконтролируемых факторов. Для разре-щения ряда проблем физики поверхностных процессов необходимо развитие микроскопической теории приповерхностных слоев жидкости. [c.117]

    При исследовании свойств пленки воды, находящейся в контакте с поверхностью, на которой расположены активные центры, учитывали не только влияние границы, не пропускающей центры масс молекул, но также и вклад от жестко закрепленных молекул воды, чьи атомы кислорода расположены в шахматном порядке на граничной плоскости. Расстояние между ближайшими атомами кислорода выбиралось равным 0,311 нм. На рис. 7.2 приведены результаты расчета локальной плотности этой системы. Как видно из рисунка, для пленки воды характерна пространственная неоднородность, как и в случае прослойки частиц с жестким кором [341]. Полученные результаты позволяют утверждать, что пространственная неоднородность в приповерхностных слоях жидкости обусловлена влиянием поверхности. [c.123]

    Второй вид обратной связи может осуществляться вследствие изменения константы скорости реакции при изменении числа свободных центров на поверхности катализатора в ходе реакции. Математическая модель такого типа иследована в [133] на примере окисления окиси углерода на Р1, Р(1, 1г и показано, что роль буфера, хотя он и реагирует с адсорбированной окисью углерода, может играть растворенный в приповерхностном слоем кислород. Если над растворенным в приповерхностном слое кислородом не происходит адсорбции реагирующих веществ или она исчезающе мала, то изменение концентрации растворенного кислорода может приводить к изменению числа свободных мест на поверхности катализатора и к резкому изменению скорости реакции необходимому для возникновения колебаний. [c.318]

    Третий вид обратной связи реализуется, когда температура поверхностного слоя катализатора может сильно отличаться от температуры глубинных слоев катализатора. Обратная связь осуществляется путем воздействия температуры поверхностного слоя катализатора на скорость реакции. С позиций этого механизма можно подойти к объяснению автоколебаний в реакции оиксления окиси углерода на платиновом катализаторе [134], если предположить, что могут возникать значительные перегревы приповерхностного слоя в ходе реакции. Время релаксации таких перегревов значительно меньше минуты, поэтому математические модел данного вида не могут описать колебания с большими периодами чем минута. [c.318]

    Механизм 1. Импульсом для создания математических моделей реальных гетерогенных каталитических систем, в которых возможно возникновение сложных и хаотических колебаний, послужила работа [146], в которой исследован механизм возникновения хаотических колебаний, состоящий из двух медленных и одной быстрой переменной. Большинство математических моделей, описывающих автоколебания скорости реакции на элементе поверхности катализатора, двумерны, поэтому они не пригодны для описания хаотического изменения скорости реакции. Механизм возникнования хаоса из периодического движения для кинетической модели взаимодействия водорода с кислородом на элементе поверхности металлического катализатора предложен и проанализирован в работе [147]. Модель учитывает основные стадии процесса адсорбцию реагирующих веществ, взаимодействие адсорбированных водорода и кислорода, растворение реагирующих веществ в приповерхностном слое катализатора. Показано, что сложные и хаотические колебания возникают в системе с кинетической моделью из трех дифференциальных уравнений, два из которых описывают быстрые процессы — изменение концентраций водорода и кислорода на поверхности катализатора, и третье уравнение описывает медленную стадию — изменение концентрации растворенного кислорода в приповерхностном слое катализатора. Система уравнений имеет вид [c.322]

    Решение. Поскольку концентрация раствора в рассматриваемом отргзке меняется, меняется и градиент концентраций в приповерхностном слое, т. е. процесс диффузии не стационарен. Используем уравнеь ие (XXVI. 15). Так как [c.408]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    Алюмоокисномедный катализатор корочного типа ИК-12-3 по химическому составу аналогичен катализатору ИК-12-1. Особенностью этого катализатора [17] является распределение активного компонента в приповерхностном слое толщиной 0,2 мм, что обеспечивает высокую активность катализатора в реакциях с сильным диффузионным торможением. [c.174]

    В процессе адгезии играют роль поверхностные (двумерные) силы, так как в процессе участвует только тонкий приповерхностный слой жидкости. В предложенной нами модели поверхность адгезива (раствор) рассмотрена как двумерный газ полимерных молекул, а процесс адгезии - как изобарное изотермическое расширение поверхностного слоя адгезива в поле вандервальсовых и химических сил субстрата. Допустим, что объем жидкости и двумерный газ на ее поверхности эквивалентны по составу и являются однородными многокомпонентными смесями из N низкомолекулярных компонентов и полимеров. Тогда модель адгезии эквивалентна модели изобары реального двумерного многокомпонентного газа, который существует на поверхности раствора. [c.111]

    Установлено, что стабилизации микрогетерогеиных эмульсий способствует самопроизвольное образование ультрамикрогетерогенных эмульсий (микроэмульсий) вокруг частиц. Микроэмульсии (размер частиц 10—100 нм) образуются вследствие турбулентности в приповерхностных слоях частиц основной эмульсии. Слон капелек микроэмульснй выступают в роли структурно-механического барьера, замедляющего коагуляцию основной эмульсии. [c.348]


Смотреть страницы где упоминается термин Приповерхностные слои: [c.143]    [c.89]    [c.8]    [c.23]    [c.107]    [c.404]    [c.178]    [c.50]    [c.275]    [c.13]    [c.24]    [c.72]    [c.252]    [c.111]    [c.253]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте