Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гамильтона гамильтониан кинетической энергии

    Оператор Гамильтона - это оператор энергии он состоит из членов кинетической и потенциальной энергий, которые относятся ко всем частицам, содержащимся в системе. Нас будут интересовать только свойства его симметрии. В результате обмена между подобными частицами (ядрами или электронами) гамильтониан должен оставаться неизменным после выполнения операции симметрии. Каждая операция симметрии переводит систему в эквивалентную конфигурацию, неотличимую от исходной. Если же в системе ничего не изменилось, то ее энергия должна быть одинаковой до и после выполнения операции симметрии. Таким образом, говорят, что гамильтониан инвариантен по отнощению к операциям симметрии точечной группы изучаемой молекулы. Это означает, что он принадлежит к полностью симметричному представлению точечной группы молекулы. [c.247]


    Резкое расширение в последнее время интереса к соединениям тяжелых элементов ставит неотъемлемой задачей учет релятивизма. Наиболее совершенные релятивистские методы основываются на релятивистском аналоге уравнения Шредингера — уравнении Дирака. Главное отличие этих уравнений заключается в том, что оператор релятивистской одноэлектронной кинетической энергии, учитывая зависимость массы электрона от его скорости, совершенно отличается от соответствующего нерелятивистского оператора. При этом гамильтониан Дирака содержит матрицы четвертого порядка в отличие от скалярного вида гамильтониана Шредингера. Решение уравнения Дирака является четырехкомпонентным вектором, называемым четырехкомпонентным спинором. Спинорная природа волновых функций приводит к тому, что в определенных состояниях, например, р"-спин-орбиталь может смешиваться с р - или р -спин-орбиталями. Это вызывает смешение электронных состояний различных симметрии и спина. [c.87]

    Вообще говоря, при квантовомеханическом подходе можно рассматривать и изменения молекулярных систем во времени, но на деле такие вычисления выполнить очень трудно. Практическое представление кинетической энергии связано с дальнейшим упрощением, согласно которому система подчиняется законам классической механики, а атомы ведут себя как макроскопические объекты. Поэтому моменты ядер представляют не в виде (—//г/2я) ( // 9), а как произведения массы и скорости р = тю. Тогда оператор Гамильтона не действует на волновую функцию, а сам становится функцией, значением которой является энергия системы. Оператор трансформируется в классический гамильтониан. Энергия системы не является больше дискретной величиной, квантовомеханическая неопределенность исчезает, а движение ядер подчиняется закону Ньютона. Конечно, ядерные и электронные движения квантуются, но пренебрежение этими движениями оказывает влияние только на колебания химических связей. Даже при классическом описании движения ядер возможно квантовомеханическим методом рассчитать потенциальную энергию каждой конформации, что, однако, требует чрезмерно большого машинного времени. В данном случае квантовая механика не имеет каких-либо преимуществ, и расчет потенциальной энергии каж  [c.571]

    При обычном обосновании уравнения Паули, впервые данном самим Паули [363], подразумевается, что приближение к равновесию вызывается возмущающим членом ЗС] в гамильтониане системы, причем ЗС, настолько мал, что вероятности перехода Рц можно вычислять в первом приближении нестационарной теории возмущений. При этом вывод уравнения Паули опирается на статистическую гипотезу, что фазы волновых функций, принадлежащих различным собственным значениям Ж, распределены беспорядочно, т.е. что матрица плотности считается диагональной в представлении невозмущенного гамильтониана. Эта гипотеза беспорядочных фаз относится не только к начальному состоянию, но многократно используется после каждого из таких интервалов времени, для которых невозмущенная энергия зе при переходе сохраняется. Аналогичная (и глубоко неудовлетворительная) ситуация имеет место при допущении молекулярного хаоса в выводе кинетического уравнения Больцмана. Этот вопрос связан с тем, что надо получить необратимость во времени, хотя исходные уравнения динамики обратимы [75,119, 163, 445]. [c.41]


    Полная энергия Е классической системы равна сумме кинетической Т и потенциальной V энергий. Аналогично, в квантовой механике оператор полной энергии Н=Е (оператор Гамильтона, или гамильтониан системы) есть сумма операторов Т кинетической и V потенциальной энергий  [c.11]

    Вид гамильтониана (4.1) существенно усложнен по сравнению с гамильтонианом многоэлектронного атома (3.2) главным образом из-за наличия члена кинетической энергии ядер. Однако масса ядра значительно превышает массу электрона (даже масса легчайшего ядра протона в 1836 раз больше массы электрона). Соответственно скорость движения ядер мала по сравнению со скоростью движения электронов. В результате медленно движущиеся ядра образуют электростатическое поле, в котором с намного большей скоростью движутся электроны, успевающие почти мгновенно подстроиться к любому изменению координат ядер. Поэтому в первом приближении можно считать ядра атомов фиксированными и рассматривать только движе1ше электронов. На языке квантовой механики такое приближение эквивалентно допущению, что полная волновая функция молекулы Р(г, К) может быть выражена в виде произведения электронной , г, К) и ядерной Ч ,(Л) функций  [c.95]

    Вид гамильтониана (4.1) существенно усложнен по сравнению с гамильтонианом атома (3.2) главным образом из-за наличия члена кинетической энергии ядер. Однако масса ядра значительно превышает массу электрона (даже масса легчайшего ядра протона в 1836 раз больше массы электрона). Соответственно скорость движения ядер мала по сравнению со скоростью движения элект- [c.86]

    Этот пример отчетливо показывает, что различие в массах т и Мпри примерно одинаковых по порядку величины слагаемых потенциала приводит к заметно различающимся по своим частотам осцилляторам, причем гамильтониан для одного из них (с частотой Ш ) получается из исходного гамильтониана простым выбрасыванием оператора кинетической энергии, содержащего большую массу М. [c.245]

    Более существенное влияние оказывают квантовые флуктуации [23], т.е. нулевые колебания солитонной решетки. Элементарные возбуждешя с волновыми векторами q вдоль оси z (волнового вектора структуры) в соизмеримой и несоизмеримой фазах были получены Мак-Милланом [15] и аналитически Булаевским - Хомским [24] и Покровским - Тапаповым [25]. Для их вычисления следует рассматривать функционал (32.23) как гамильтониан системы и добавить в него член с кинетической энергией ся, где я — оператор импульса, сопряженный фазе р. Из гамильтониана типа [c.198]

    НИИ характерных для квантовой механики задач. Это целиком относится и к расчетам гиперповерхностей потенциальной энергии с помощью решения характеристического уравнения (17) для электронного гамильтониана (18). Поэтому нужно последовательно для каждой конфигурации ядер численно решать уравнение Шрёдингера (17) для электрона в поле фиксированных ядер. Область систематического изменения (с заданными шагами) координат ядер определяется целями, которые мы преследуем при построении потенциала. Для универсального потенциала, конечно, нужно обеспечить разумную точность во всем пространстве координат исследуемой системы. Для решения спектроскопических задач достаточно знать поведение потенциала в непосредственной близости соответствующего минимума на гиперповерхности, а для кинетических исследований требуется правильное описание асимптотического поведения потенциала для каждого предела диссоциации. Точность представления потенциала можно было бы увеличить, используя более мелкий шаг по отдельным координатам, однако число точек, в которых можно провести численное решение уравнения (17) при разумных затратах времени на вычисления, ограничено. Для задач, в которых используются гиперповерхности потенциальной энергии, целесообразно иметь не табличное, а аналитическое представление, полученное параметрической подгонкой энергии при выбранных конфигурациях ядер. Выбранная функция должна быть достаточно гибкой для точного воспроизведения табличных данных. В то же время ее вид должен давать возможность аналитического вычисления определенных интегралов, необходимых для решения конкретных физических задач. Квантовохимические решения уравнения (17), как и представления гамильтониана (18), всегда приближенны П, 128]. Обычно используется классический нерелятивистский) гамильтониан, в котором не учтены некоторые виды взаимодействия, например рассмотрены только валентные электроны. Решение характеристической задачи для такого неполного гамильтониана проводится чаще всего в приближении ЛКАО и тоже является неточным. Среди источников погрешностей укажем на конечность базиса в приближении ЛКАО, пренебрежение некоторыми типами интегралов (например, в приближении НДП), использование однодетерминантной волновой функции. Учи- [c.55]


Смотреть страницы где упоминается термин Гамильтона гамильтониан кинетической энергии: [c.74]    [c.76]    [c.57]    [c.47]    [c.21]   
Основы квантовой химии (1979) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия кинетическая



© 2025 chem21.info Реклама на сайте