Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калий в натрий-калиевом насосе

    Стехиометрические соотношения в натрий-калиевом насосе весьма своеобразны. При распаде каждой молекулы АТР из клетки выкачиваются 3 иона натрия, а извне в клетку накачиваются 2 иона калия. Поскольку из клетки выкачивается больше положительно заряженных ионов, чем пО падает в нее, внутри клетки создается избыточный отрицательный заряд. Наличие отрицательного заряда внутри клетки было установлено уже давно путем измерения электрического мембранного потенциала (разд. Б.З). Поскольку клеточная мембрана все же проницаема для ионов К+, возникновение мембранного потенциала приводит к диффузии этих ионов через мембрану внутрь клетки, что обусловливает частичную нейтрализацию отрицательно-го заряда на мембране. Когда скорость пассивной диффузии уравновешивает мем бран- [c.363]


    Стехиометрия транспорта ионов имеет одно важное свойство так как количество ионов натрия, транспортируемых из клетки, превышает количество входящих в клетку ионов калия, результирующий суммарный поток положительных ионов направлен наружу. Следовательно, натрий-калиевый насос представляет собой электрогенный насос [6]. В случае если ток че- [c.175]

    После достижения максимального уровня потенциала действия натриевые ворота начинают закрываться, и проницаемость мембраны для натрия снижается. Все это время натрий-калиевый насос не прекращает своей работы, в результате чего постепенно восстанавливается исходный потенциал покоя. Реполяризация приводит к снижению пика, или спайка , потенциала действия (рис. 17.4, А) до исходного уровня. Фактически мембранный потенциал снижается до более отрицательного, чем в покое, значения. Происходит гиперполяризация, обусловленная тем, что калиевые ворота закрываются чуть позже натриевых, и клетка теряет через них лишние положительные заряды (ср. ход кривых для Ка+ и К+ на рис. 17.4, Б). Однако ионы калия продолжают поступать в клетку, и постепенно восстанавливаются их трансмембранное электрохимическое равновесие и исходный потенциал покоя. [c.283]

    Рис, 23. Схема работы натрий-калиевого насоса а — активные центры захватили ион калия снаружи и ион натрия внутри клетки б — белковая молекула, захватившая ионы, повернулась на 180° за счет энергии АТФ и освободила захваченные ионы, при этом калий попал внутрь клетки, а ион натрия был выброшен наружу в — молекула вновь повернулась на 180° и готова к захвату новых [c.102]

    ДЛЯ ИОНОВ калия. При этом проницаемость для ионов натрия снова уменьшается, и через некоторое время вновь восстанавливается обычный мембранный потенциал. Последовательность событий в этом процессе можно представить следующим образом сначала открываются натриевые каналы (это не то же самое, что поры в Ыа+-насосе), а затем — калиевые каналы, после чего каналы закрываются в той же последовательности Результаты этих исследований позволили Ходжкину и Хаксли вывести уравнения, позволяющие количественно оценивать потенциалы действия и предсказывать наблюдаемые на опыте скорости проведения и ряд других характеристик нервных импульсов. [c.371]

    Активный транспорт может служить для переноса одного вещества в одном направлении либо для переноса двух веществ в одном или в противоположных направлениях. В последнем случае он называется сопряженным активным транспортом. Примером типичного сопряженного активного транспорта является работа натрий-калиевого насоса, который локализован в плазматической мембране практически всех клеток организма и переносит ионы натрия и калия против градиента концентраций с использованием энергии гидролиза АТФ. [c.446]


    Поскольку натрий-калиевый насос выкачивает нару-нгу больше ионов натрия, чем закачивает внутрь ионов калия, он меняет не только концентрацию этих ионов, но и мембранный потенциал. Поэтому натрий-калиевый насос называют электрогенным насосом. В каждом цикле работы насос выбрасывает наружу лишний ион натрия и тем самым гиперполяризует мембрану. После одного или нескольких ПД в клетке оказывается избыток Na это активирует работу насоса. Интенсивно выкачивая натрий, насос может заметно гиперполяризовать мембрану МП может на 20 мВ превышать ПП за счет работы насоса. Таким образом, насосы не только влияют на концентрации ионов, но могут быть и источниками заметной разности потенциалов. [c.103]

    Натрий-калиевый насос необходим животным клеткам для поддержания осмотического баланса (осморегуляции). Если он перестанет работать, клетка начнет набухать и в конце концов лопнет. Произойдет это потому, что с накоплением ионов натрия в клетку под действием осмотических сил будет поступать все больше и больше воды. Ясно, что бактериям, грибам и растениям с их жесткими клеточными стенками такой насос не требуется. Животным клеткам он нужен также для поддержания электрической активности в нервных и мышечных клетках и, наконец, для активного транспорта некоторых веществ, например сахаров и аминокислот. Высокие концентрации калия требуются также для белкового синтеза, гликолиза, фотосинтеза и для некоторых других жизненно важных процессов. [c.190]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

    Калий в отличие от натрия может не только реабсорбироваться, но и секретироваться. При секреции калий из межклеточной жидкости поступает через базальную плазматическую мембрану в клетку канальца за счет работы натрий-калиевого насоса , а затем выделяется в просвет нефрона через апикальную клеточную мембрану пассивно. Секреция, как и реабсорбция, является активным процессом, связанным с функцией клеток канальцев. Механизмы секреции те же, что и механизмы реабсорбции, но только все процессы протекают в обратном направлении—от крови к канальцу. [c.611]

    Перенос ионов характеризуется стандартными константами скорости реакции, йа+, i-, которые можно идентифицировать с проницаемостями мембраны для этих ионов. Этот простой подход приводит к тому же результату, что и подход Ходжкина, Хаксли и Катца. Уравнение (3.25) удовлетворительно согласуется с полученным экспериментально значением мембранного потенциала покоя, если предположить, что проницаемость мембраны для выше, чем для Na+ и СГ, так что отклонение от потенциала Нернста для ионов калия не очень велико. В то же время проницаемость для других ионов не пренебрежимо мала. Следовательно, аксон в состоянии покоя должен терять ионы К% а внутри мембранная концентрация Na соответственно должна расти. Этого, конечно не произойдет в присутствии активной Na , K -АТРазы, переносящей калиевые ионы из межклеточной жидкости в аксон и ионы натрия в противоположном направлении. Поскольку этот вид переноса не связан с протеканием тока и не влияет на мембранный потенциал, его п мяято называть электронейтральным насосом. Кроме того, активный транспорт может происходить и не на основе обмена ион за ион . Функционирование такого электрогенного насоса, изменяющего мембранный потенциал, наблюдается, например, при выдерживании мышечного волокна в безкалиевой среде, обогащенной натрием. При этом в результате обмена внутриклеточного калия на внеклеточный натрий волокно загружается ионами натрия. После возвращения волокна в среду, которая по составу соответствует обычной межклеточной жидкости, натрий выводится из клеток активным транспортом до такой степени, что мембранный потенциал сдвигается к более отрицательным значениям (происходит гиперполяризация клеточной мембраны). Гиперполяризацию можно снять уабаином [31]. [c.235]


    Также действует натриево-калиевый насос в клетках снаружи клетки высокая концентрация натрия, он свободно попадает в клетку через микропоры и увеличивает здесь свою концентрацию Тут же начинает действовать осмос и оп раздувает клетку, увеличивает микроноры и сквозь них теперь уже свободно попадают также и ионы калия, имеющие снаружи меньшую концентрацию. Т.е. сочетание осмоса и МДК-эффекта регулирует обмен веществ в клетках. Это кажется интереснейшая идея  [c.391]

    Водная фаза получается при смешении в гуммированных аппаратах воды, пирофосфата натрия, триэтаноламина, хлорида калия и раствора калиевого мыла синтетических жирных кислот. Углеводородная фаза включает мономеры и регулятор молекулярной массы (грет-додецилмеркаптан). Отдельно готовят водные растворы инициатора — персульфата калия и стоппера — гидрохинона. После смешения водной и углеводородной фаз в насосе, эмульсия поступает р первый полимеризатор, сюда же подают раствор персульфата калия. [c.360]

    Но однако, если калий в клетке имеет высокую концентрацию и микропоры стали узкими, то калий не удаляется из клетки. В то время как патрий может свободно проходить из нее до совсем низких концентраций— ниже концентрации калия. Это нринцин действия калиево-натриевого насоса в клеткою Натрий осмосом расширяет микроноры, чтобы в них свободно зашли молекулы калия и здесь они запираются при снижении осмоса. [c.396]

    Na" + к" )-насос в тенях эритроцитов можно заставить работать в противоположном направлении - для синтеза АТР. Если градиенты концентраций ионов натрия и калия в эксперименте увеличить до такой степени, что энергия их электрохимических градиентов будет выше химической энергии гидролиза АТР, то ионы будут проходить через мембрану по их электрохимическим градиентам, а АТР будет синтезироваться из ортофосфата и ADP с помощью натриево-калиевой АТРазы. Таким образом, фосфорилированная форма АТРазы (позиция 2 на рис. 6-49) может релаксироваться либо перенося фосфат на ADP (от позиции 2 к позиции I), либо изменяя свою конформацию (от позиции 2 к позиции 3). Будет ли общее изменение свободной энергии использоваться для синтеза АТР или же для выкачивания Na" из теней эритроцитов, зависит от относительных концентраций АТР, ADP и фосфата и от электрохимических градиентов ионов натрия и калия. [c.385]

    Кажутся удивительными высокие концентрации натрия вокруг клетки, а калия внутри ее, так как оба катиона могут диффундировать через стенки клеток. Результатом такой естественной диффузии натрия внутрь клеток, а калия —наружу должна быть тенденция к уравниванию концентраций каждого катиона внутри и снаружи клеток. Такой эффект действительно имеет место, но ему препятствует обратный процесс, называемый натрий-калиевым ионным насосом , который заключается в оттягивании каждого из этих катионов из областей низких концентраций в области высоких концентраций. Если этот насос прекращает действовать, что бывает следствием сильного ожога или замораживания ферментов, участвующих в его работе, например при замораживании тканей во время операций или при хранении сосудов для переливания крови при низких температурах, то устанавливается доннановское мембранное равновесие. При отогревании ионный насос начинает действовать вновь, и опять устанавливается обычный дисбаланс ионов. Работа ионного насоса зависит от координационной химии катионов натрия и калия [7, 8]. В общем случае известны две закономерности изменения констант устойчивости комплексов в ряду щелочных металлов а) Ы+> Ыа+>-К+>РЬ+>С5+ для комплексов с небольщими анионами простых слабых кислот, например гидроксильным ионом и ацетат-ионом б) Ы+< Ыа+< <К+<КЬ+<Сз+ для комплексов с крупными анионами сильных кислот, например нитрат- и сульфат-ионами. [c.280]

    Деятельность натриево-калиевого насоса необходима для того, чтобы увеличить количество калия в клетке. Поскольку натрий имеется в большом количестве повсюду, а калия мало в окружающей среде. То натрий создает очень часто осмотическое давление и максимально широко расширяет микропоры, так что этим он заглатывает труднее пропикающие ионы калия, которые оказываются запертыми внутри клетки после прекращения осмоса. [c.401]


Смотреть страницы где упоминается термин Калий в натрий-калиевом насосе: [c.311]    [c.57]    [c.190]    [c.28]    [c.33]    [c.53]    [c.217]    [c.426]    [c.155]    [c.376]    [c.42]   
Равновесия в растворах (1983) -- [ c.279 , c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Калиевый ИСЗ

Калия натрия

Натрий калием



© 2025 chem21.info Реклама на сайте