Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты влияние радиоактивности

    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]


    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Влияние радиоактивных излучений сводится в основном к ионизации среды, поглощающей энергию, и к индуцированию свободных радикалов, в зависимости от концентрации которых будут развиваться процессы радикально-цепного и ионного характера. В этих условиях в топливах одновременно с низкомолекулярными соединениями осколочного характера образуются димеры и полимеры как продукты рекомбинации радикалов и ионов в результате крекинга, дегидрирования, деметилирования, изомеризации и полимеризации углеводородов. В присутствии кислорода эти процессы усиливаются и приобретают окислительный характер. Ката- [c.165]

    В процессах вторичной адсорбции могут принимать участие все ионы, присутствующие в растворе. Поэтому добавление в раствор любых ионов должно оказывать влияние на число вторично адсорбированных ионов данного радиоактивного элемента. При этом особенно сильное влияние должно оказывать введение в раствор многовалентных ионов (АР ТЬ + и т. д.). [c.122]

    Действие электронно-захватного детектора в отличие от пла-менно-ионизационного основано на измерении уменьшения ионного тока. В ионизационной камере этого детектора под влиянием радиоактивного источника происходит ионизация газа-носителя с освобождением электронов. При попадании в детектор веществ, способных захватывать электроны, происходит снижение фонового тока детектора, благодаря чему возникает сигнал. Электронно-захватный детектор является избирательным и ис- [c.46]

    Чтобы исключить влияние адсорбционных потерь радиоактивного изотопа внутри прибора и на фильтре, внутреннюю поверхность прибора, включая и поверхность ультрафильтра, насыщают радиоактивным изотопом, выдерживая активный раствор в приборе до наступления адсорбционного равновесия. Затем измеряется активность раствора в приборе и подается давление. За адсорбционным насыщением мембраны следят, измеряя активность последовательных порций фильтрата. При этом в случае наличия в растворе ионной формы радиоактивного изотопа наблюдается постепенное повышение удельной активности фильтрата с увеличением объема профильтрованного раствора, а затем, после установления адсорбционного равновесия внутри мембраны, величина удельной активности фильтрата становится постоянной (рис. 11, кривая 1). В случае коллоидного состояния радиоактивного изотопа (кривые 2—5) удельная активность фильтрата не увеличивается по мере пропускания раствора, а, напротив, может уменьшиться, что объясняется, по-видимому, кольматацией [c.61]


    Влияние природы (потенциала) электрода. Хевеши [ 1 впервые обстоятельно изучил влияние потенциала металла-подложки, принимаемого им при погружении в раствор, содержащий его собственные ионы и ионы исследуемого радиоактивного изотопа, на самопроизвольное выделение последнего. Он изучал поведение В- и С-продуктов активных осадков радия, тория и актиния. В качестве электродов он употреблял различные металлы (серебро, медь, свинец, кадмий, цинк, марганец), погруженные в раствор, содержащий определенную концентрацию их собственных [c.557]

    Чтобы в таком коротком курсе дать читателю наглядное и четкое представление о молекулярных основах жизни, приходится с большой осторожностью подходить к подбору излагаемого материала. Весь вопрос в том, что и как сократить. Прежде всего следует учитывать относительную важность излагаемого материала. Так с точки зрения медицинской химии элементарный фосфор не имеет такого значения, как, например, аденозинтрифосфат с ионами водорода приходится сталкиваться гораздо чаще, чем с газообразным водородом оксигемоглобин важнее двуокиси кремния влияние радиоактивных излучений на молекулярные превращения в нашем организме интересует нас больше, чем подробности о [c.7]

    Влияние радиоактивного излучения. Вопрос о влиянии радиоактивности на свойства смол связан с использованием смеси ионитов как для тонкой очистки радиоактивных сточных вод, так и для других химических операций в присутствии радиоактивных веществ. Установлено, что облучение существенно изменяет емкость, основность, набухание и растворимость ионитов [24в, 80—83]. Глубина изменений свойств зависит от структуры ионита, природы исходных мономеров, фиксированных ионов и противоионов. Кроме того, существенную роль играет тип излучения, его энергия, величина потока и время облучения. [c.34]

    В последние годы удалось установить наличие некоторого влияния химических явлений и на ядерные процессы. Так, например, наблюдали изменение Тп ядер атомов некоторых легких радиоактивных элементов в зависимости от того, в какой форме — иона или атома — они существуют. Далее отмечено также, что вероятность электронного захвата зависит (правда, в небольшой степени) от состава молекулы, в которую входит данный радиоизотоп. Здесь, вероятно, сказывается взаимовлияние атомов в молекуле химического соединения в смысле их поляризационных деформаций и, как следствие, большая или меньшая близость электронных оболочек к нейтронодефицитному ядру. [c.384]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и физикохимическим свойствам адсорбционных слоев на металлах. При этом были использованы изменения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Поскольку в процессе электроосаждения металлов адсорбционные явления занимают особое место, то при рассмотрении влияния чужеродных частиц, адсорбирующихся на поверхности электрода, в процессе осаждения металлов необходимо учитывать соотношение скоростей осаждения и пассивирования металла. В случае, когда скорость осаждения металла больше, чем скорость адсорбции, поверхность металла неполностью покрывается чужеродными частицами. При этом электрохимическая реакция протекает только на активных участках электрода и ее скорость будет пропорциональна доле активной поверхпости. Если скорость адсорбции больше скорости осаждения металла, то поверхность электрода полностью закрывается частицами (пассивируется). Б этом случае скорость протекания электрохимической реакции лимитируется перенапряжением, обусловленным работой проникновения ионов металла через адсорбированный слой  [c.370]

    Необходимо также иметь в виду, что радиоактивные вещества, находящиеся в воде, способны образовывать коллоиды (коллоидные растворы содержат взвешенные частицы размером от 0,001 до 0,1 мкм). По вопросу о радиоколлоидах в научной литературе имеется несколько направлений, из которых наиболее убедительным является направление, возглавлявшееся И. Е. Стариком [117, 118]. И. Е. Старик считал, что радиоколлоиды состоят из частиц самих радиоактивных веществ и образование радиоколлоидов не сопряжено с адсорбцией ионов радиоактивных элементов на посторонних пылинках, взвешенных в растворе, как это представлялось О. Хану [1191. Эти радиоколлоиды ведут себя своеобразно вещества в них не находятся в состоянии электролита, не диссоциированы на ионы и не участвуют в ионных реакциях [116]. Такие коллоиды проходят через фильтры, но под влиянием случайных величин теряют устойчивость и коагулируют. [c.77]

    Интересно влияние излучения на кристаллы. При поглощении рентгеновских лучей галогенидами щелочных металлов и другими кристаллами наблюдается характерное окрашивание. Хлористый натрий становится желтым, а хлористый калий — голубым, причем окраска обусловлена поглощением света электронами, которые были выбиты рентгеновскими лучами и захвачены вакансиями отрицательных ионов кристаллической решетки. Когда облученный кристалл нагревают, захваченные электроны высвобождаются, и при возвращении на более низкий уровень энергии они испускают свет. Это явление известно как термолюминесценция. Если кристалл нагревают медленно, то в ряде случаев испускается свет при определенных температурах. На характер кривых зависимости интенсивности излученного света от температуры влияют продолжительность облучения, присутствие примесей и другие факторы. Некоторые породы и минералы, такие, как известняк и флюорит, проявляют термолюминесценцию даже без предварительного облучения, потому что они содержат следы радиоактивного урана порядка нескольких миллионных долей. [c.556]


    Влияние возрастающих количеств иодида, тиоцианата, перхлората и нитрата на способность щитовидной железы концентрировать радиоактивный иод было изучено на крысах . Все эти анионы вызывали заметное снижение градиента концентрации радиоактивного иода в щитовидной железе и сыворотке. И здесь перхлорат-ион оказался наиболее эффективным анионом, а нитрат-ион—наименее эффективным, ионы иода и тиоцианата имели промежуточную активность и при одинаковых молярных концентрациях были примерно одинаково эффективны. [c.176]

    В ряде работ комплексообразование исследовано методом экстракции, с использованием радиоактивных изотопов или спектрофотометрии. Работ по применению спектрофотометрического варианта сравнительно немного. Методом экстракции (экстрагент — четыреххлористый углерод или хлороформ) определены константы устойчивости комплексов ПАН-2 с ионами Со(П1), Си, Мп, 2п и Ы1 [559], ПАР с ионами Са [869]. Установлено, что скорость экстракции комплекса ПАН-2 с и(У1) четыреххлористым углеродом выше, чем при экстракции хлороформом [201]. Методом экстракции изучено комплексообразование ПАН-2 с ионами Си, Мп, N1 [678], 1п [549, 918], Ее(П1), Т1(П1) [918]. Радиоактивные изотопы приме-няли для изучения экстракции комплексов ПАН-2 с ионами Си, 2п [278, 759] Ag, Ей, Но, V [760] Со, Си, Мп, N1, 2п [5591 комплекса ПАР с Оа [869], а также для исследования влияния различных маскирующих веществ — цитрата, цианида, тиомочевины, тиосульфата, фторида на экстракцию комплексов ПАН-2 с элемента ми ГВ, ПВ и П1А—УА групп периодической системы [795]. Хорошая растворимость ПАН-2 в органических растворителях и удов летворительное состояние развития теории экстракции примени тельно к реакциям комплексообразования должны способствовать успешному применению метода ко многим системам. [c.36]

    Мы не касаемся вопроса влияния очень высоких энергий излучения на органические соединения или эффектов ядерных превращений в различных веществах [593, 2185], хотя масс-спектрометрия широко используется для изучения продуктов радиолиза [298, 299, 1190, 1191] и радиоактивного распада, а также механизма образования этих продуктов. Проводилось также определение отношения массы к заряду для ионов, возникающих при радиоактивном распаде [783, 1605, 1902]. [c.245]

    Уравнения [98], [99] и [100] обеспечивают получение трех независимых величин, характеризующих возраст радиоактивных минералов, рассчитываемый на основании изотопного анализа радиогенного свинца, присутствующего в минерале в сочетании с анализом общего количества свинца, урана н тория, также присутствующих в минерале. Определение содержания свинца, урана и тория проводится либо методом изотопного разбавления [434] (гл. 3), либо, несколько менее точно, обычными химическими методами. Необходимо учитывать влияние загрязнений обычным свинцом, например при измерениях распространенностей изотопов свинца в образцах нерадиоактивных минералов, в которых могут присутствовать и радиоактивные минералы. Однако вводимая поправка вносит некоторую неопределенность наиболее точное значение возраста минералов получается в том случае, если поправка на загрязнение обычным свинцом мала, что следует из незначительного содержания в образце ФЬ. На рис. 174, а представлено в качестве примера измерение изотопных отношений в образце уранового свинца, практически свободного в основном от примесей свинца из других источников. Высота пика ионов с массой 206 примерно в 15 раз больше всей шкалы. Пик с массой 208 вызван наличием следов обычного свинца, присутствующего в образце, — наиболее [c.464]

    Изучение изотопного обмена позволяет судить и о характере связи. Так, используя радиоактивную серу выявили наличие обмена в связях С = 5 в органических соединениях и отсутствие обмена в связях Р = 5, что было объяснено меньшей поляризуемостью во втором типе связи. Следует оговориться, что употребляя термин прочность связи , нужно ясно представлять себе, какой характер реакции замеш,ения имеется в виду, т. е. происходит ли эта реакция по ионно-молекулярному (гетеролитическому) или атомному (гемолитическому) механизму. Один и тот же заместитель в углеродной цепочке и длина цепи оказывают в таких случаях противоположное влияние на прочность связи . Так, радиоактивный изотоп иода помог изучить обмен в галоидзамещенных насыщенных углеводородах различного строения. Ионный механизм обмена изучался в системах К1 + К1 и водно-спиртовом растворе (90% этилового спирта +10% воды) механизм атомного обмена — в системах Р1 + Ь в циклогексановом растворе, причем атомы иода получались фотохимически, путем диссоциации молекул Ь. Опыты показали, что усложнение скелета алифатического углеводорода или переход от нормального строения к изомерному приводят к резкому уменьшению скорости ионных реакций и к увеличению скорости атомных. Так, если обмен иода в СНд идет целиком по ионному механизму, если, далее в п-иодистом пропиле СНз — СН, — [c.242]

    Образование возбужденных форм (ионов и свободных радикалов) и их последующие реакции протекают не мгновенно на рис. 4 показана последовательность этих явлений и масштаб времени. Молекула М, получая энергию радиоактивного излучения, превращается в возбужденную молекулу М . Последняя или разлагается или взаимодействует с исходной молекулой М, образуя неактивные (молекулярные) продукты. По мере образования и накопления этих продуктов в подвергающейся радиолизу смеси они оказывают сильное влияние на дальнейшие изменения физических и химических свойств исходного вещества. [c.53]

    Очень большое каталитическое влияние ионов галогена на скорость рацемизации указывает на течение перегруппировки за счет обменной реакции галогена в органической молекуле с ионом галогена, находящимся в растворе. Для экспериментального подтверждения правильности предположения было проведено в идентичных условиях измерение скорости рацемизации и скорости реакции замещения галогена соответствующим радиоактивным изотопом на примере следующих соединений [19]  [c.208]

    Под коррозией металла или металлической конструкции подразумевают их разрушение, происходящее под влиянием химического или электрохимического воздействия внешней среды. При этом металл или компоненты сплава переходят в окисленное (ионное) состояние. В результате происходит постепенная, а иногда и достаточно резкая потеря основных функций конструкции. Механическое разрушение, например, излом, или истирание поверхности (эрозия), а также радиоактивный распад металла имеют, в отличие от коррозии, физическую природу. В практике довольно часто встречаются также случаи разрушения металла при совместном коррозионно-механическом воздействии коррозионная эрозия (кавитация), коррозионное растрескивание, коррозионная усталость и др. [c.13]

    Радиометрические методы анализа твердых и жидких веществ основаны на использовании явлений поглощения и отражения радиоактивных излучений веществом или на возбуждении вторичного излучения в анализируемой пробе. При анализе газов эти эффекты не подходят, так как газы вследствие их малой плотности почти не оказывают влияния на излучение. Важное значение имеет изменение электропроводности газов при воздействии излучения, обусловле.шое ионизацией атомов и молекул газа. Индуцированная электропроводность зависит от химических и физических свойств газов, что позволяет провести анализ газов или их смесей. На этом принципе основано действие ионизационных анализаторов. Ионизационный анализатор состоит из ионизационной камеры и прибора, измеряющего ток ионизации (рис. 6.13). В камере закреплен радиоактивный препарат, излучение которого вызывает ионизацию пробы анализируемого вещества, находящейся в межэлектродном пространстве. Электрометром измеряют возникающий ионный ток, который при постоянной толщине радиоактивного препарата и постоянном электрическом поле зависит от плотности и состава газа. [c.324]

    Электронозахватный Д. х. представляет собой камеру с двумя электродами, к-рые используют для измерения ионного тока, и радиоизотопным источником для ионизации газов. В качестве источника используют Р-активные (напр., N1) и а-а(стивные (напр., Ри) излучатели, а в качестве газа-носителя N3, Н2, Не. Под влиянием радиоактивного излучения газ ионизируется с образованием электронов. Если приложить к электродам камеры определенный потенциал, возникает заметный фоновый ток. Молекулы анализируемых в-в, обладающие сродством к электро- [c.26]

    Изучая распределение полония, висмута и свинца под влиянием силы тяжести в растворах, Лахс и Вертенштейн вычислили по формуле Стокса размеры оседающих частиц. Большой размер частиц авторы объяснили ионной адсорбцией радиоактивных изотопов на присутствующих в растворе загрязнениях. [c.41]

    Многие важные реакции в твердых ионных кристаллах почти или даже совсем не рассмотрены. Читателю можно рекомендовать обратиться к сборнику обзорных статей по реакционной способности твердых тел, изданному под редакцией В. В. Болдырева и К. Мейера (16]. Работы по радиационной химии ионных кристаллов, в частности исследования Викт. И. Спицына и В. В. Громова по изучению влияния радиоактивности твердых веществ на их физико-химические свойства безусловно заслуживают отдельного обзора монографического характера [18]. В то же время при первом чтении твердотелец может опустить главы V и X, представляющие скорее интерес для специалистов — радиохимиков. [c.8]

    Ряд особенностей твердых радиоактивных препаратов обусловлен возникновением стационарного заряда на их поверхности. Возникновение заряда является неизбежным следствием а- и р-распада, причем знак заряда, как очевидно, противоположен знаку заряда частицы, выбрасываемой ядром радиоизотопа. Величина заряда могла бы быть весьма большой, однако происходит утечка его из-за взаимодействия заряженной поверхности с ионами окружающей среды. Возникновение заряда оказывает влияние на электрохимические свойства тел. Так, было установлено, что радиоактивные никель и титан изменяют свои потенциалы в 0,1 растворе NaOH первый становится более положительным, второй — более отрицательным. Такое поведение металлов связывается с утолщением окис-ной пленки на поверхности при их активации. Цинк с [c.214]

    HJ при помощи диэтилового эфира. При изучении коэффициентов распределения иодида индия и иодида галлия в зависимости от концентрации иодистоводородной кислоты (приготовленной смешиванием иодида калия и серной кислоты), от концентрации иона металла и избытка серной кислоты применяли радиоактивные изотопы и Ga с периодом полураспада, соответственно, 50 суток и 78 часов. 10 мл водного раствора, содерн ащего эквивалентные количества иодида калия и серной кислоты, радиоактивные изотопы индия и галлия и носители, встряхивают 3 мин. с 10 мл свежеперегнанного диэтилового эфира, и после разделения измеряют объем обеих фаз. 4,0 мл той или другой фазы помещают в счетчик с кристаллом NaJ и измеряют активность. Влияние концентрации кислоты изучено со свободным от носителя Оа при концентрации индия около 10 М. [c.78]

    Радиационная стойкость определяется дозой погло щенного радиоактивного излучения, при которой необ ратимые радиационно-химические изменения в иони тах не оказывают заметного влияния на их свойства Для органических высокомолекулярных ионитов ра диационная стойкость находится в пределах от 10 до 109 10 о рад [266]. [c.115]

    Изучено влияние сорта хроматографической бумаги на значения R ионов Сг(1П), Мп(И), u(II), Mo(VI) и Fe(III) [641]. В качестве элюента использовалась смесь пентанола, бензола и НС1 (1,19) (6 1 3). Установлено, что скорости передвижения ионов максимальны для бумаги Шлейхер и Шюль № 2040 В и Ватман № 4. Результаты хроматографического анализа радиоактивного препарата Naa r04 показали, что значения Rf ионов Сг(1П) и r(VI) в случае разных сортов бумаги при использовании в качестве подвижной фазы смеси вода —этанол—25%-ный NH4OH (5  [c.145]

    Перхлорат, перйодат, иодат и хлорат способствуют количественному выведению иода из щитовидной железы крысы, но в случае перхлората это может быть осуществлено за 15 мин. Перхлорат по способности выводить из организма радиоактивный иод примерно в 10 раз более эффективен, чем тиоцианат и в 300—чем нитрат, тогда как гипохлорит и дииодат имеют промежуточную между ними эффективность. Изучение свойства этих веществ предупреждать накопление ионов иода показало, что оно приблизительно параллельно их влиянию на выведение иода, и в данном случае наиболее эффективным оказался перхлорат. У крыс, получавших перхлорат в течение 17 суток, наблюдалось увеличение щитовидной железы и снижение содержания иода. Замеченные изменения были аналогичны наблюдавшимся при приеме внутрь пропилтиоурацила. [c.176]

    Атмосферное электричество явилось предметом многочисленных исследований самые полные данные собраны в книгах Трейна [9] и Коронити [10]. Хотя концентрации ионов в верхней части атмосферы от 80 км и выше (т. е. выше -слоя) сравнительно хорошо известны [11], опубликованные данные по ионным концентрациям и по концентрации свободных электронов для нижней части атмосферы очень сильно разнятся в интервале высот от 40 до 90 км. Ниже 40 км сказывается влияние погоды и географического местоположения. На рис. 2 мы приводим сводные данные, заимствованные из различных источников [3, 9, 10]. Из них видно, что ионы порождаются космическим излучением на всех высотах и что полный объемный заряд в нижних слоях атмосферы обусловлен дрейфом заряженныз частиц различной подвижности по направлению к поверхности Земли. Ионизация в близких к поверхности Земли слоях атмосферы может также происходить от радиоактивности земной коры. Заряд Земли изменяется и от наличия в земной атмосфере тлеющих и грозовых разрядов. Такахаси [12] исследовал термоэлектрический эффект для льда и привел значение энергии активации [c.154]

    Существование одного и того же элемента в виде атомов с различными массами подозревали ранее, поскольку было найдено, что многие пары радиоактивных элементов не разделяются обычными химическими методами. Предполагалось, что эти пары не будут различаться спектроскопически. Содди [1905J назвал такие различные по радиоактивности формы данного элемента изотопами, поскольку они занимают одно и то же место в периодической системе элемен-тов. Предполагалось также, что могут существовать и изотопы стабильных элементов и что неидентифицированный ион, обнаруженный Томсоном, представляет собой тяжелый изотоп неона. После того как в 1919 г. Астон окончательно доказал существование двух изотопных форм неона, теория существования изотопов, вытекающая из теории атомного ядра Резерфорда [1752], оказала большое влияние на дальнейшее формирование теории строения ядра. Содди [1906] считал, что изотопы обладают совершенно идентичными физическими свойствами, различие сохраняется лишь в отношении сравнительно немногих свойств, непосредственно связанных с массой атома . Такие же величины, как константы равновесия и скорости химических реакций молекул, содержащих различные изотопы, различаются очень незначительно. Со,зди предвидел, что для многих легких элементов, как, например, магния, хлора, атомные веса которых заметно отличаются от целых чисел (24,3 и 35,5 с(ютветственно), будет характерно наличие нескольких распространенных стабильных изотопов. [c.14]

    Коренман И. М. и Шеянова Ф. Р. 139 ] исследовали экстрагирование дитизоната цинка с использованием радиоактивного изотопа при разной иониой силе раствора и показали незначительное влияние ионной силы на экстрагирование.— /Трцлг. ред. [c.54]

    Рив (1952) исследовал течение этой реакции, применяя синтетический изобутилен, меченый радиоактивным в положении 1. Если бы атака хлором сопровождалась замещением водорода метильной группы и образованием соединения а, озонирование (см. 5.31) образующегося хлористого металлила привело бы к радиоактивному формальдегиду. Так как образовавшийся формальдегид не был радиоактивным и так как дихлорид пзобутилена очень устойчив, то вместо присоединения иона С1 , реакция должна включать атаку ионом С1+, сопровождающуюся образованием третичного карбониевого иона б. От иона б отщепляется протон и образуется хлористый металлил в. Положение двойной связи 3 продукте реакции, таким образом, отличается от положения связи в исходном соединении. Свободнорадикальный механизм реакции исключается вследствие того, что реакция в жидкой фазе не подвернсена влиянию освещения или кислорода, а реакция в паровой фазе не дет в области температур от 70 до 150°С. [c.178]


Смотреть страницы где упоминается термин Иониты влияние радиоактивности: [c.58]    [c.74]    [c.42]    [c.28]    [c.97]    [c.138]    [c.53]    [c.208]   
Ионообменная технология (1959) -- [ c.452 , c.453 , c.454 ]

Ионообменная технология (1959) -- [ c.452 , c.453 , c.454 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты радиоактивность



© 2025 chem21.info Реклама на сайте