Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активности коэффициент электрическая компонента

    Физико-химические процессы на кремниевом аноде. Процесс анодного оксидирования возможен тогда, когда продукты окисления не удаляются с поверхности электрода растворением в электролите. Пассивация поверхности происходит, если образующийся оксид формируется в виде плотной малопористой пленки, достаточно прочно связанной с поверхностью подложки. Это явление наблюдается только тогда, когда электрод выступает в качестве активного компонента электрохимического взаимодействия. В присутствии кислорода по-вер.хность кремния уже покрыта тонким оксидным слоем. Эта хемо-сорбционная пленка служит барьером для диффузии кислорода и предохраняет кремний от полного окисления при комнатной температуре. Преодоление этого барьера возможно или термическим путем, поскольку коэффициент диффузии экспоненциально растет с температурой, или созданием в окисле электрического поля. Одним из путей полевого ускорения диффузии и является анодное оксидирование кремния. [c.115]


    Здесь ji — локальное значение вектора массового потока компонента г i и fi — концентрация и коэффициент активности комионента — электрический заряд компонента F — число Фарадея ф — электрический потенциал Vi и р — парциальное значение мольного объема и давление компонента Дэ, — коэффициент эффективной диффузии вещества в ионите. [c.250]

    В результате электрическая компонента коэффициента активности не изменяется. С другой стороны, невозможность взаимного перекрытия собственных объемов ионов оказывает некоторое влияние, поскольку даже при равенстве нулю всех зарядов все же имеются отклонения от идеальности. [c.55]

    Некоторые свойства могут быть отнесены к раствору в целом (макросвойства) или к отдельным компонентам раствора (парциальные свойства). Рассмотренные ранее термодинамические величины V, 8, и, Н, Р, Ср, Су, Р, а также концентрация, плотность р, вязкость Т1, электрическая проводимость к, теплопроводность рЯ, и другие — это общие характеристики раствора. На основе концентрационных и температурных зависимостей этих свойств вычисляют теплоты растворения и кристаллизации, разведения и концентрирования, испарения и сублимации, парциальные теплоемкости, избыточную относительную парциальную энтропию, парциальные кажущиеся молярные объемы, растворимость, фугитивность, коэффициенты активности и активность и т. д. [c.74]

    Теперь уравнения сложнее, чем прежде, поскольку коэффициенты активности /г, п относительно компонентов п зависят от локального состава раствора. Для выражения этих коэффициентов активности через концентрации применимы термодинамические характеристики многокомпонентных растворов, Обсуждавшиеся в разд. 31. Этот прием показывает также, как можно вводить коэффициенты активности в теорию разбавленных растворов, не пользуясь коэффициентами активности отдельных ионов. Произвольность потенциала Ф и отнесение ионных активностей к компонентам п дополнительно отражает произвольность выбора компонентов п в уравнении (77-4). Однако потенциал Ф определен однозначно, хотя и произвольно, и его можно использовать, чтобы установить соотношения для электрического состояния на межфазных границах. [c.266]

    Таким образом, первой и основной особенностью топливных элементов является возможность непосредственного преобразования химической энергии в электрическую с высоким коэффициентом полезного действия. Следует указать, что эта особенность, так же как и все изложенные выше термодинамические закономерности, относится не только к топливным элементам, но и к химическим источникам тока обычного типа —гальваническим элементам и аккумуляторам. В них, как это уже отмечалось ранее, также осуществляется прямое преобразование химической энергии активных веществ в электрическую энергию. Топливные элементы отличаются от обычных гальванических элементов и аккумуляторов тем, что в них компоненты реакции (топливо и окислитель) не заложены заранее в состав электродов, а непрерывно подаются к электродам в процессе работы. Поэтому они могут работать непрерывно и сколь угодно длительно, пока осуществляется подвод реагентов и отвод [c.490]


    Для оценки глубины и скорости отверждения использованы многие электрические характеристики тангенс угла диэлектрических потерь tgб [114, 352—354], диэлектрическая проницаемость е [350, 355], коэффициент диэлектрических потерь г" [355, 356], удельное объемное электрическое сопротивление р [343, 353, 356—358] и др. В последнее время разработан метод контроля процесса отверждения путем оценки активной составляющей высокочастотной проводимости [354, 359]. Этот метод наряду с определением е, е" и использован для изучения отверждения полиэфирных связующих ПН-1, ПН-3, НПС 609-21 и их смесей, т. е. компонентов стеклопластиков и декоративных покрытий. Величина г нередко монотонно уменьшается с повышением степени отверждения, а рв возрастает на несколько десятичных порядков (2—6). [c.120]

    Генерация активных частиц на поверхности электрода при высоких потенциалах может происходить путем адсорбционного взаимодействия с компонентами химической среды или через разряд и хемосорбцию разрядившихся частиц, как правило, радикального характера. В этом случае, как это показано в разделе 1 настоящей статьи, в обычные закономерности классической электрохимической кинетики, связывающей структуру двойного электрического слоя со скоростью электродной реакции (1), включается влияние усложнившейся поверхности раздела электрод/раствор за счет хемосорбированных частиц дипольного характера [32]. Благодаря меньшему влиянию электрического поля на снижение энергии активации в электродных реакциях при такой структуре скачка потенциалов резко уменьшается коэффициент переноса, увеличивается перенапряжение таких процессов, как выделение кислорода, и в то же время появляется возможность возникновения электродных реакций, требующих высокого значения потенциала. В то же время общие законы разряда частиц на электроде остаются неизменными, хотя в уравнения кинетики включаются дополнитель- [c.166]

    Если же учитывать также и зависимость диэлектрической проницаемости растворителя от напряженности электрического поля ионов, то другие термодинамические параметры растворов электролитов (коэффициенты активности, теплота разбавления, парциальная молярная энтальпия компонентов растворенного вещества и т. п.) могут быть [c.24]

    Из свойств водных растворов в технологии наиболее часто оперируют такими, как концентрация, растворимость газов и твердых веществ, их пересыщение, давление пара летучих компонентов раствора, плотность, вязкость, электрическая проводимость, энтальпия, а из ионно-молекулярных структурных характеристик — активность ионов водорода. Другие характеристики — активность всех компонентов, фактический ионно-молекулярный состав, изменение энтропии, а также температурноконцентрационные коэффициенты свойств в интегральной и дифференциальной формах —применяют при теоретической оценке вклада реальных химических взаимодействий в изменение свойств раствора. [c.74]

    Для ионного компонента Хг зависит от электрического состояния фазы. Поскольку X и /Пг приняты независимыми от электрического состояния, заключаем, что от этого состояния зависит Аналогичное утверждение применимо к коэффициенту активности /г. в противоположность этому Гуггенгейм принимает, что Уг не зависит, а Я зависит от электрического состояния. Это приводит нас к малоприемлемой ситуации, когда у должен зависеть от состава при постоянном электрическом состоянии. Однако для растворов различного состава еще не было дано определения постоянного электрического состояния. [c.45]


Смотреть страницы где упоминается термин Активности коэффициент электрическая компонента: [c.41]    [c.206]    [c.206]   
Новые проблемы современной электрохимии (1962) -- [ c.55 ]

Новые проблемы современной электрохимии (1962) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Активный компонент

Коэффициент компонента



© 2025 chem21.info Реклама на сайте