Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бронза коррозионная стойкость

    Бериллий используют в качестве легирующей добавки к сплавам, придающей им повышенную коррозионную стойкость, высокую прочность и твердость. Наиболее ценны сплавы Си — Ве бериллиевые бронзы), содержащие до 2,5% Ве. Сплавы бериллия применяют в самолетостроении, электротехнике и др. [c.471]

    Коррозионная стойкость оловянистой бронзы в растворах серной кислоты в зависимости от температуры [c.251]


    Наряду с высокой механической прочностью без снижения коррозионной стойкости, сплав Бр.АЖ9-4 обладает высокими антифрикционными свойствами. При введении в этот сплав 4—6 /о N1 сохраняются основные свойства алюминиевых бронз, а также приобретается стойкость к газовой коррозии до температур — 500° С. [c.251]

    Оловянистые бронзы, так же как и медь, быстро разрушаются в азотной кислоте и в других окисляющих средах, в аммиаке, цианистых соединениях и др, С повышением температуры коррозионная стойкость оловянистых бронз снижается, как это видно из данных, приведенных в табл, 24 для оловянистой бронзы, содержащей 2% 2п. [c.250]

    Самой высокой коррозионной стойкостью обладают кремнистые бронзы, а прочностью и упругостью (после термообработки) — бериллиевые бронзы. Коррозионная стойкость бериллиевых бронз достаточно высока, но при больших напряжениях во влажной атмосфере они склонны к коррозионному растрескиванию. [c.50]

    Для некоторых систем первые пороги устойчивости отсутствуют, а коррозионная стойкость наступает только при высоких значениях п, как это видно из кривой изменения химической стойкости для системы Си—Аи в концентрированной азотной кислоте плотности 1,3-Ю кг/м при температуре 90° С (рис. 97). Известны случаи наступления коррозионной стойкости, например для бронз, и при более высоком пороге устойчивости. [c.126]

    Коррозионная стойкость оловянистых бронз немного выше стойкости меди в ряде агрессивных сред, в частности в серной кислоте невысоких концентраций и в других слабокислых средах, в морской воде, в щелочных растворах (исключая аммиач-1И)1е) и др, [c.250]

    Алюминиевые бронзы, содержащие до 10% Л/, обладают высокой коррозионной стойкостью в серной и многих органических кислотах, разбавленной соляной кислоте, морской воде и атмосфере. [c.18]

    Магиий и оловянистые бронзы обладают низкой коррозионной стойкостью а растворах соли. Платина при температурах выше 500 С корродирует с большой скоростью, если в расплаве содержатся окислители, [c.825]

    Медь и многие сплавы на ее основе стойки только в чистой кислоте при нормальной температуре, но их скорость коррозии может увеличиться в десятки раз при аэрировании нли загрязнении раствора окислителями и повышении температуры, Из сплавов на основе меди несколько лучшей коррозионной стойкостью обладают оловянистые бронзы. Скорость коррозии молибдена, вольфрама, ниобия в растворах кислоты невелика, возможно охрупчивание ниобия а концентрированной кислоте ири высокой температуре. [c.851]


    Pf-Q.MHa делен на пять зон по температуре и парциальному давлению окиси угле-Рис. 4.23. Зоны применимости различ- РОДа — это позволяет выбрать марку ных материалов в смесях СО + Н, [21 ]. стали для конкретных условий эксплуатации. Так, стали с содержанием 30% Сг или 25% Сг + 20% Ni, марганцовистая бронза (5% Мп) обладают высокой коррозионной стойкостью и могут быть использованы для любой зоны, так же как стали с 13—17% Сг. Стали низколегированные и типа Х5 удовлетворительны для I и 5 зон. Стали типа 18-8 пригодны для 1 и 2 зон, а при низком давлении для зон 3, 4 и 5. [c.236]

    Наибольшая интенсивность разрушения металлов в водной среде вследствие кавитации проявляется при температурах 40— 50 °С. Чугуны и углеродистые стали подвержены в воде в несколько раз более быстрому кавитационному разрушению, чем сплавы, отличающиеся высокой коррозионной стойкостью (хромистые, хромоникелевые стали, некоторые бронзы, монель и т. д.). [c.456]

    ЯВЛЯЮТСЯ сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз, применяются сплавы никеля с 2—4% (масс.) Ве, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов. Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении. Бериллий — один из лучших замедлителей и отражателей нейтронов в высокотемпературных ядерных реакторах. В связи с ценными свойствами бериллия производство его быстро растет. [c.389]

    Бериллий, магний и щелочноземельные металлы нашли широкое применение в промышленности. Они входят в состав многих сплавов, которые отличаются легкостью, повышенными механическими свойствами и коррозионной стойкостью. Бериллиевые бронзы — сплавы меди с бериллием (0,5—2% Ве) — используются для производства пружин, безыскрового инструмента для работы во взрывоопасных условиях. Сплавы магния с алюминием, цинком, марганцем широко применяются в авиа- и автомобилестроении. Радий используется для получения сплава с бериллием, который служит источником нейтронов в ядерных реакторах. [c.237]

    Оловянистые бронзы имеют ограниченное применение, так как в настоящее время изысканы более прочные и экономичные сплавы, с успехом их заменяющие. Так, сплавы меди с алюминием (алюминиевые бронзы) обладают по сравнению с оловянистой бронзой повышенными механическими свойствами, лучшей коррозионной стойкостью и лучшей жидкотекучестью. Однако следует отметить, что оловянистые бронзы обладают минимальной линейной усадкой. [c.147]

    Бронзы обладают достаточно высокой коррозионной стойкостью в атмосфере, соленой воде, в растворах едкого кали, сульфатов натрия, серы. Оловянистые бронзы подвергаются коррозионному разрушению под действием бисульфата натрия, минеральных кислот (азотной и соляной), аммиака и растворов сернокислых солей. [c.150]

    Алюминиевые бронзы по своей коррозионной стойкости превосходят обычно оловянистые бронзы. [c.150]

    Из таблицы видно, что добавление сероводорода к солянокислым средам ухудшает коррозионную стойкость бронзы. Коррозионные свойства латуней изменяются ири этом менее резко. [c.154]

    Высокой коррозионной стойкостью отличается стабилизированная алюминиевая латунь следующего состава 76%) меди, 2% алюминия, 0,05% мышьяка. Трубки, изготовленные из этого материала, развальцованные в трубных решетках из фосфористой бронзы (96,5% медн, 4,3% олова, 0,2% фосфора), показали в 2 раза более высокую коррозионную стойкость по сравнению с стабилизированной оловянистой латунью [188]. [c.155]

    Бронзы. Наиболее широко применяют оловянистые бронзы, содержащие 8—14% олова, алюминиевые бронзы с содержанием до-14% алюминия, кремнистые с 2—3% кремния и 1—1,5% марганца. Они не искрят при трении или ударах. Детали из них можна получить методом литья. В условиях атмосферной коррозии бронзы характеризуются высокой стойкостью. Они проявляют коррозионную стойкость в неокисляющих растворах солей и кислот. [c.36]

    Коррозионная стойкость оловянистых бронз такая же, как и никеля при покрытиях одинаковой толщины [15]. [c.90]

    Металлокерамические фильтры изготавливают из металлических порошков прессованием, прокаткой и спеканием. В качестве металлических порошков обычно используют бронзу, нержавеющие и малоуглеродистые стали, которые могут быть хромированы для повышения коррозионной стойкости. Физические свойства, химический состав, структура, пористость и прочность металлокерамических фильтров могут быть весьма разнообразными. Размер отверстий в таких перегородках может быть 1 —75 мкм, а пористость достигать 50 %. Прочность на растяжение достигает 70 МПа/м . [c.219]


    Основная масса марганца (около 90%) применяется в металлургии для легирования сталей. Он придает железным сплавам коррозионную стойкость, вязкость н твердость. Важное значение имеет марганцевая сталь (83—87% Ре, 12—15% Мп, I—2% С), которая идет главным образом для изготовления железнодорожных зельсов. Большое значение имеют и другие сплавы зеркальный чугун (15—20% Мп), марганцевая бронза (95% Си и 5% Мп), обладающая высокой механической прочностью. Из сплава ман- [c.391]

    Применение. Б.-легирующая добавка в медных [берил-лиевые бронзы в США-ок. 80% производимого Б. (1980)], никелевых, железных, магниевых и др. сплавах, приобретающих благодаря Б. высокую прочность и твердость, хорошую Электрич. проводимость, теплопроводность и коррозионную стойкость. Насыщение пов-сти стальных деталей Б. (бериллизация) повышает их коррозионную стойкость. Ок. 20% производимого Б. (США, 1980) используется в авиастроении, ракетной (детали сверхзвуковых самолетов. [c.281]

    С целью замены олова другими, менее дифицнтными добавками, в последние годы находят большое применение безоло-вянистые бронзы — алюминиевые, кремнистые, марганцовистые, бериллиевые, свинцовистые и др. Коррозионная стойкость большинства безоловянистых бронз не ниже, а некоторых нз них, как, например, кремнистых, выше оловянистых. По своим физикомеханическим свойствам безоловянистые бронзы не уступают оловянистым. [c.249]

    Прочность (500—700 Мн/м ) и более высокую коррозионную стойкость. При содержании в алюминиевой бронзе 5% А1 сплав характеризуется высокими антифрикционными и пластическими свойствами. Снятие внутренних нлпряжений осуществляется путем низкотемпературного отжига бронзы при 360—460° С. Особенно высокой коррозионной стойкостью отличается алюминиевая бронза с содержанием 9,8% А1 и алюминиевая бронза, содержащая дополнительно 4% железа (Бр.АЖ9-4). Хотя этот спла является многофазным, но фазы в нем распределены равномерно и он имеет мелкозернистое строение. [c.251]

    Широкое применение меди в промышленности обусловлено ее весьма низким электрическим сопротивлением и хорошей теплопроводностью. Около 50% добываемой меди потребляет эектротех-ническая промышленность в виде высокочистой меди и медного порошка (99,9% Си) 30—40% меди расходуется на производство медных сплавов — латуней, бронз, мельхиора, нейзильбера, кон-стантана, манганина и др. Медь и ее сплавы применяются для изготовления ответственных изделий, которые должны обладать высокой коррозионной стойкостью и хорошей теплопроводностью. Потребителями меди являются также гальванотехника, полупроводниковая техника (купроксные выпрямители), сельское хозяйство (для борьбы с вредителями растений и в виде микроудобрения). [c.303]

    Основнуюмассу марганца выплавляют В виде ферромарганца (сплав 60—90% Мпи40—10% Ре). Марганец (в виде ферромарганца) обладая большим сродством к кислороду, используется как раскислитель при плавке стали. Одновременно марганец образует тугоплавкие соединения с серой, обезвреживая ее влияние на сталь в процессе кристаллизации. Марганец как легирующая добавка к стали придает последней коррозионную стойкость, вязкость, твердость, но снижает пластичность. В цветной металлургии марганец используют для получения бронз и специальных латуней. Из производных марганца широко п])именяется диоксид МпОг. Из него получают все остальные сседине- [c.292]

    Бериллий используют для легирования сплавов добавка его придает сплавам повышенную коррозионную стойкость, высокую прочность и твердость. Наиболее ценными являются сплавы меди с бериллием Си—Ве (бериллневые бронзы), содержащие до 2,5 % Ве. Сплавы, легированные бериллием, применяют в самолетостроении, электротехнике и др. Бериллий, являясь высококачественным замедлителем и отражателем нейтронов, широко применяется в высокотемпературных ядерных реакторах. Через тонкие пластины бериллия легко проникают рентгеновские лучи, поэтому его используют для изготовления окон> рентгеновских трубок. [c.262]

    Алюминиевая бронза, содержащая > 8 % А1, имеет очень хорошие прочностные характеристики и хорошую коррозионную стойкость при условии, что сплав не содержит богатой алюминием "у-фазы, которая очень чувствительна к селективному коррозионному деалюминирова-нию. Чтобы понизить опасность возникновения -( -фазы, следует обеспечивать подходящие условия термообработки и сварки материала. Опасность можно понизить также, вводя в сплав добавки никеля, железа и марганца. Никельалюминиевая бронза является прочным и коррозионностойким материалом, который хорошо зарекомендовал себя для морских применений, например судовых винтов, кранов и трубных досок в теплообменниках. [c.137]

    Многие металлические сплавы с участием германия обладают целым рядом ценных свойств. Так, сплавы золота с германием (с содержанием германия более 8%) обладают малой вязкостью в раеплавленном состоянии и способностью увеличиваться в объеме при кристаллизации, что позволяет использовать их для изготовления точных отливок. Добавки германия к дура-люминам увеличивают их прочность, а легирование германием магниевых отливок повышает их коррозионную стойкость. Особый интерес представляют сплавы меди с германием — германиевые бронзы, которые отличаются исключительно высокой коррозионной стойкостью (растворяются только II царской водке). [c.232]

    Марганец придает специальным сталям коррозионную стойкость, особую износостойкость, вязкость и твердость. Марганец улучшает также свойства меди. Сплавы марганца с медью обладают высокой прочностью и коррозионной стойкостью. Из этих сплавов делают лО" натки турбин, а из марганцовистых бронз — винты самолетов и другие авиадетали. [c.483]

    Пнрофосфатиый электролит, содержащий, г/л серебро (мет) 25—35, яирофосфат калия 350—450, карбонат аммония 40—45, использующийся при 15—25 "С, /н=0,7- 1,0 А/дм , имеет более низкую рассеивающую способность по сравнению с цианидным прочность сцепления с бронзой н латунью хорошая, коррозионная стойкость, мнкротвердость, удельное и переходное сопротивления осадков из пирофосфатной и цнанидной ванн приблизительно одинаковы [c.128]

    Оксидированный а1юмииий и ого сплавы окрашивают в растворах органических красителей ита неорганических со ей с целью декоративной отделки имитируя зоюто, бронзу, латунь, медь и другие металлы и дополнительного повышения коррозионной стойкости [c.241]


Смотреть страницы где упоминается термин Бронза коррозионная стойкость: [c.288]    [c.609]    [c.254]    [c.324]    [c.808]    [c.827]    [c.831]    [c.837]    [c.325]    [c.152]    [c.73]    [c.73]   
Технологические трубопроводы нефтеперерабатывающих и нефтехимических заводов (1972) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Бронзы

Коррозионная стойкость



© 2024 chem21.info Реклама на сайте