Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь также Сплавы медные свойства

    Е. Конструкционные материалы. Основными конструкционными материалами являются алюминий, углеродистая и нержавеющая стали. Выбор материала определяется расчетными предельными значениями давления и температуры, а также коррозионной стойкостью. В отсутствие коррозионных жидкостей высокая теплопроводность алюминия обеспечивает самую низкую стоимость теплообменника. Алюминий целесообразно применять в диапазоне температур от криогенных до 250 °С, углеродистую сталь — от 250 до 480 "С, нержавеющую сталь — в диапазоне 250—650 С. Для работы при высоких температурах в условиях коррозии предпочтительно использовать нержавеющие стали. Медь удобна для паяных конструкций и обеспечивает идеальные тепловые свойства. Тем не менее ее применяют только в коррозионной среде, где неприменим алюминий. В большинстве автомобильных радиаторов применяются медь или медные сплавы. [c.307]


    Имеются также сообщения о поименении фосфата триэтанол-амина в комбинации с натриевой солью бензтиазола. Эта смесь хорошо защищает от коррозии сталь, латунь, медь, припой и алюминий. Один фосфат триэтаноламина способен вызвать коррозию алюминия из-за вторичного осаждения соединений меди. Вместо бензтиазола применяют также бензтриазол, который, как показал Коттоп [178], отличается высокими защитными свойствами по отношению к меди и медным сплавам. [c.280]

    Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]

    К п. 30,3. Самофлюсующиеся припои с раскисляющей добавкой лития считаются весьма перспективными для получения прочных паяных соединений. Они могут смачивать не только поверхности металлов, но также поверхности фарфора и различных других керамических материалов и кварца, рекомендуются для пайки титана и его сплавов. Самофлюсующимся является и припой из 99% серебра и 1% лития. Высокими флюсующими свойствами отличаются также бораты лития. В исследовательских работах припоем, содержавшим медь, никель, литий и бор, производилась пайка на воздухе без применения флюсов или защитных атмосфер. Отмечается возможность использования лития для получения новых типов медных припоев. [c.59]

    Медь — один из первых металлов, использованных человеком. Бронза, представляющая собой сплав меди и олова, была впервые получена более 5000 лет назад ее широкое применение, когда она ценилась за прочность, режущие свойства, а также за декоративность, послужило основанием для присвоения тому времени названия бронзовый век . В природе медь обычно встречается в виде сульфидов меди. К примеру, более 50% мировой добычи приходится на пирит СиРеЗг, который содержит также железо и серу. Добывать медь из руды очень сложно. Однако давно известно, что медь можно извлечь из воды, которая просачивается через горные породы, содержащие медные руды. Сейчас известно, что этот процесс выщелачивания металлов происходит под действием бактерий. Бактерии превращают нерастворимые металлические соединения в растворимые, например в сульфат меди, из которого гораздо легче экстрагировать медь. [c.84]


    Электроды. Чаще всего электроды изготовляют из платины, но иногда применяются медь и ее сплавы (латунь), а также другие металлы. Преимущество платиновых электродов состоит в их относительно высокой инертности и, кроме того, их можно прокаливать для обезжиривания и удаления органических соединений или газов, оказывающих вредное влияние на физические свойства осадка. Некоторые металлы (особенно висмут, цинк и галий) нельзя выделять непосредственно на поверхности платинового катода, чтобы не повредить его поверхность перед электролизом растворов этих металлов на платиновый электрод должно быть нанесено защитное медное покрытие. [c.24]

    Медно-фосфористые припои очень жидкотекучи и хорошо затекают в зазоры. Вследствие повышенной склонности этих припоев к ликвации пайку следует выполнять быстро. Электрическая проводимость и теплопроводность медно-фосфористых припоев высокая, близкая к тем же свойствам меди, благодаря чему они находят применение в электропромышленности. Недостаток — невысокая пластичность, особенно эвтектического сплава поэтому их Применяют при пайке соединений, не подвергающихся значительным изгибам, ударам и обработке давлением. Медно-фосфористые припои используют для пайки меди, а также (в меньшей степени) для пайки серебра, молибдена и вольфрама. [c.117]

    Сплав, содержащий 50—65% 5п, имеет определенные преимущества перед хромовыми покрытиями, особенно там, где предъявляются повышенные требования в отношении декоративных свойств. Декоративное хромирование с подслоем меди и никеля может быть заменено осаждением сплава 5п—N1 с медным подслоем без промежуточного никелирования. Покрытие 5п—N1 при определенных условиях электролиза получается блестящим непосредственно из электролизера без последующей полировки поверхности. По внешнему виду это покрытие имеет бледно-розовый оттенок. Покрытие сплавом 5п—N1 может применяться также вместо лужения, когда к покрытию предъявляются более высокие требования в отношении механических свойств. [c.208]

    Все эти свойства индукционных печей с закрытым каналом, а также то, что изготовление подового камня является довольно сложной и трудоемкой операцией, привели к тому, что в настоящее время областью применения этих печей является, в подавляющем большинстве случаев, плавка металлов с сравнительно низкой температурой плавления — цветных и легких металлов в этом случае стойкость подового камня исчисляется тысячами плавок. В области плавки цветных металлов индукционные печи с сердечником имеют все преимущества и перед дуговыми печами (при плавке меди и медных сплавов), и перед печами сопротивления (при плавке алюминия и его сплавов), так как угар и другие потери металла при плавке в индукционных печах малы, а расход энергии того же порядка или ниже, чем у печей других типов. [c.283]

    Помимо увеличения доступной удельной поверхности, перед нанесением твердой смазки металлические детали целесообразно подвергать операциям для защиты от атмосферной коррозии. Сюда относятся фосфатирование стали, анодирование алюминия, пассивирование меди и медных сплавов. Имеются указания, что получаемые при этом пленки обладают антифрикционными свойствами, а также увеличивают адгезию лакокрасочных покрытий. Приведенные в табл. 20 данные исследований влияния предварительной обработки незакаленной стали фосфатированием на долговечность покрытий на основе МоЗг показывают, что имеет значение не только толщина покрытия, но и форма кристаллов фосфата .  [c.55]

    Олово — никель. Сплав олово — никель, содержащий 60 — 65% Зп, обладает высокой антикоррозионной стойкостью и хорошими декоративными свойствами. Этот сплав представляет собою интерметаллическое соединение (Зп—N1), которое можно получить только электролитическим способом. Электролитическое покрытие этим сплавом имеет красивый внешний вид (розовый оттенок), обладает повышенной твердостью и износостойкостью и при определенных условиях электролиза получается блестящим непосредственно из ванны без полировки. Покрытие наносится с защитнодекоративной целью на изделия из меди и ее сплавов пли из стали с медным подслоем взамен хромирования и никелирования, в некоторых случаях взамен лужения при повышенных требованиях к механическим свойствам поверхности (твердость, износостойкость), а также взамен серебрения и палладирования в производстве печатных плат. [c.437]

    К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]


    Резко снил<ают механические свойства медно-никелевых сплавов также присадки висмута и свинца. Эти элементы практически нерастворимы в никеле, меди и их сплавах и присутствие их в количествах более 0,002...0,005% также приводит к разрушению медно-никелевых сплавов при горячей обработке давлением. Температура рекристаллизации этих сплавов в зависимости от содержания в них легирующих элементов и вредных примесей находит- [c.22]

    Хром повышает жapoy тOiйчивo ть и антикоррозионные свойства медных сплавов и задерживает рост зерен при отжиге. Сплавы меди с хромом, а также ряд медных сплавов, содержащих добавки хрома, например, алюминиевые бронзы, рекомендуются для применения в качестве антифрикционных. [c.450]

    Подобно сталям добавки 0,2—0,6 % В1 к сплавам на основе алюминия улучшают их механическую обработку, а добавка 0,2—0,4 % В1 к алюминиймагниевым сплавам предотвращает их растрескивание при вальцевании. Добавки висмута в последнее время также используют в медных сплавах вместо свинца при изготовлении осветительных приборов. При добавлении висмута к бронзам удается существенно повысить их литейные свойства и коррозионную стойкость, а к меди — получать отливки с мелкозернистой структурой. В автомобильной и станкостроительной промышленности введение 0,002—0,005 % В1 улучшает характеристики чугунных отливок — увеличивает сопротивление износу и удваивает их жизнь, существенно сокращает дорогостоящий цикл прокаливания стали и деталей из чугуна при их ковке. Добавка 0,005 % В1 при получении шаровидных фафитовых отливок улучшает ударное сопротивление и пластичность. [c.10]

    Тем не менее, литий -нащел значительное и разнообразное применение в металлургии как раскисляющий и дегазирующий агент. Так, например, он повышает механические свойства стали, никеля, алюминия и других металлов, а также освобождает границы зерен цинка, алюминия и медных сплавов от загрязняющих примесей. Кроме того, его высокая активность обеспечивает ему значительные преимущества при удалении кислорода и серы из расплавленных металлов. Введение лития в расплавленную медь, бронзу или латунь (в виде лигатур) обеспечивает их полное раскисление и получение качественных слитков. [c.169]

    Теллур применяется в качестве присадки к чугуну, стали, в том числе нержавеющей, цветным металлам и сплавам (олово, свииец, медь) Микродобавки теллура значительно улучшают структуру, механичес кие свойства и обрабатываемость чугуна и стали. Микродобавки тел лура (0,05—0,1 %) повышают механические и антикоррозионные свой ства свница. Сплав свиица с теллуром применяют для изготовления хи мической аппаратуры, используемой в производстве серной кислоты Оловянистые сплавы (баббиты), содержащие теллур (0,1—1,0%), ха рактеризуются повышенной твердостью, прочностью и износостойкостью. Теллур улучшает технологические свойства меди и медных сплавов, а также повышает их теплостойкость. [c.365]

    Штейном называют сплав сульфидов железа и тяжелых цветных металлов, а также небольшого количества оксидов, представленных в основном магнетитом и вюсти-том. Будучи промежуточным продуктом металлургического производства, штейн в процессе конвертирования выполняет функции источника тепла, энергообразующими компонентами которого служат сульфидное железо и сера. Медный штейн на 80-95 % состоит из сплава сульфидов меди и железа, содержание меди в котором колеблется в пределах 10-60%. В условиях автогенного режима плавки чаще получают штейны, содержащие 35-60 % меди. Они начинают плавиться при температурах порядка 915-950 °С и полностью переходят в жидкое состояние при 1050 °С, приобретая свойства плотной (р = 4700- 5700 кг/м ) легкотекучей жидкости, свободно проникающей в трещины и поры огнеупорной футеровки. Штейны обладают достаточно большой теплопроводностью [А, 10ч-15 Вт/(м К)], поэтому насыщение ими верхних слоев кладки ведет к существенному снижению ее термосопротивления. [c.455]

    Металл довольно легок, его плотность 0,53 г/с. . Он имеет наивысшие точки кипения и плавления, 179 и 1317 соответственно, а также наибольшую область жидкого состояния из всех щелочных металлов. Кроме того, он обладает необычайно высокой удельной теплоемкостью (0,784 кал/г X при 0°). Такие свойства делают его превосходным материалом для теплообменников, однако он вызывает сильную коррозию—больше, чем другие жидкие щелочные металлы,— что является его большим практическим недостатком. Литий применяют для удаления кислорода и серы и для общего дегазирования меди и медных сплавов. Его широко используют для получения литийорганических соединений, а также LiH и LiAlH4. [c.61]

    Нержавеющие стали типа 18-8, 18-8-Мо подвергаются точечной коррозии и способствуют осмолению продукта. Алюминиевые сплавы АД-1, АМгб также подвержены точечной коррозии, но не вызывают изменения цвета кислоты. Медь и медные сплавы окрашивают левулиновую кислоту в синий и зеленый цвет и способствуют затвердеванию продукта (табл. 18.5). Из неметаллических материалов относительно стойки полиизобутилен ПСГ, винипласт и полиэтилен ПО-100. Паронит УВ-10, хотя и не меняет своих свойств, но вызывает усиленную полимеризацию кислоты. [c.431]

    Укринол-5/5 (ТУ 38-101389—79) — средневязкое минеральное масло с активными серохлорсодержащими присадками, в том числе с хлорпарафином ХП-470 (40 %). Содержит 5 % консервационного масла К-17, что улучшает противокоррозионные свойства. Рекомендуется для использования на холодновысадочных автоматах, а также при штамповке деталей из меди и медных сплавов. Изготовляется на ДОЗ. [c.107]

    Наиболее широкое применение из всех скелетных катализаторов получил никель Ренея, активность которого может быть повышена добавкой к нему небольшого количества благородных металлов (платины, палладия). Свойства скелетных катализаторов, содержащих в качестве активного начала медь и железо, еще далеко не изучены. Известно, что медный скелетный катализатор по своему действию аналогичен восстановленной меди, получеиной из окиси. В непредельных соединениях он гидрирует лишь концевую двойную связь, но проявляет большую активность при восстановлен1ш карбонильных соединений. Активную скелетную медь можно получить также выщелачиванием из размельченного сплава Деварда (50% А1, 45% Си, 5%Zn). [c.102]

    Изделия из бериллиевой бронзы (медного сплава, обладающего способностью к твердению) часто подвергают термообработке для придания им апределенных технологических свойств. В результате термообработки образуется поверхностная окисная пленка с прочным сцеплением, окрашенная в серый (до черного) цвет и содержащая, кроме окислов двухвалентной и одновалентной меди (красные пятна или точки), также и окись бериллия. [c.382]

    Алюминий нашел широкое применение в народном хозяйстве как в чистом виде, так и в виде сплавов, что объясняется его ценными и разнообразными свойствами. Его используют в электротехнике для изготовления различной аппаратуры и электрических проводов. Хотя электропроводность алюминия и составляет только 62—65% от электропроводности меди, но он в 3,3 раза легче ее (плотность 2,7 г/сж ). Если сравнить медный и алюминиевый провода одинаковой длины и с одинаковой электропроводностью, то окажется, что диаметр алюминиевого провода будет в 1,3 раза больше медного, но его масса окажется в 1,96 раза меньше. При окислении алюминия выделяется большое количество теплоты, что позволяет применять его для алю-минотермического получения металлов (см. главу VIII). Смесь алюминия с оксидами железа (термит) применяют для сварки рельсов и балок расплавленное железо выпускают из тигля в зазор между свариваемыми изделиями при охлаждении оно прочно их соединяет. Серебристым порошком алюминия окрашивают фонарные столбы, хранилища нефтепродуктов, газгольдеры и т. д., а также добавляют этот порошок к взрывчатым веществам (аммоналы). Чистый алюминий обладает большой стойкостью к коррозии, и поэтому он находит применение в химической (аппараты в производстве азотной и органических кислот), в пищевой промышленности, для изготовления фольги и предметов бытового назначения. Алюминием высокой степени чистоты (с содержанием примесей не более 0,01%) заменяют свинец при изготовлении оболочек электрических кабелей. При электролизе разбавленной серной кислоты с анодами в виде пластин алюминия на его поверхности в результате окисления образуется тонкий слой оксида алюминия. Такие пластины из анодированного алюминия прочно окрашиваются в различные цвета красителями (которые адсорбируются этим слоем) и служат матералом декоративным и для художественных изделий. [c.138]

    При конструировании химических машин необходимо выбирать материалы с таким расчетом, чтобы были предотвращены условия возникновения элект[)о-химической коррозии, поэтому в деталях и узлах, где сопрягаются два металла, необходимо избегать контакта металлов, электрохимические потенциалы которых значительно отличаются друг от друга. Недопустимо создавать контакт со сталью меди и медных сплавов, никеля и никелевых сплавов, благородных металлов и их сплавов. Для предотвращения коррозионного разрушения в таких случаях целесообразно применение оцинкования и кадлшрования стальных деталей, применение прокладок и шайб из оцинкованного железа. Для нержавеющих сталей недопустимым является контакт с алюминием и его сплавами, медью и медными сплавами и т. д. Для алюминиевых сплавов недопустим контакт со сталями, медными и никелевым сплавами и допустим контакт с. юбы.ми материалами, покрытыми цинком, кадмием и алюминием. Необходилю также учитывать коррозию свинца при контакте его с портланд-цементом, так как он обладает щелочными свойства.ми. [c.81]

    Покрытия, полученные электролитическим методом и методом горячего погружения, применяют для сосудов и оборудования, сделанного из стали, литого железа, меди или медных сплавов, используемых в пищевой промышленности, а также для проволоки и деталей для электрической и электронной промышленности, где легкая способность паяться является важным свойством. Хотя оловянные покрытия не обладают стойкостью к разрушению от фрет-тин-коррозии и фреттинг между листами из белой жести при транспортировке иногда способствует образованию темных пятен, оловянные покрытия могут быть использованы, чтобы понизить риск разрушения стальных деталей от фреттинг-коррозии [29]. Аналогичные эффекты наблюдаются в местах пакетных соединений, а также на покрытых оловом пистонах из алюминиевых сплавов или железа во время процесса обкатки [30]. [c.426]

    В нейтральных водах коррозионная стойкость медистых сталей при некоторых обстоятельствах зависит, вероятно, более от непрерывного характера различных окисных слоев, чем от непосредственной защиты за счет медного покрова. При полном погружении медистая сталь может в первые месяцы корродировать также быстро или даже быстрее, чем чистое железо, но позднее коррозия становится медленнее это показали опыты Кариуса и Шульца в искусственной морской воде. Медь, выпадающая в присутствии хлоридов, дает рыхлый осадок. Если сталь содержит кроме меди еще и алюминий, защитные свойства покрытия более удовлетворительны Маху утверждает, что медные частицы в этом случае теотее связаны друг с другом желатинообразной гидроокисью алюминия, которая твердеет со временем. Ценные сведения, касающиеся железномедных сплавов, собраны Греггом и Даниловым .  [c.536]

    Изучалась кинетика парофазного гидрирования метилацетилена в статической системе интервале 20—230 С в присутствии различных порошкообразных и нанесенных на пемзу катализаторов никеля, кобальта, железа, родия, иридия, осмия, платины, меди, а также на никель-медных сплавах разного состава. Получены кинетические кривые, значения поряд ков реакцш по обоим компонентам, величины энергии активации, а также сопоставлены значения удепьндй. активности и селективности разных катализаторов. Результату сходные с полученными ранее для реакции гидрирования ацетилена, обсуждены в аспекте ВЛ1Ж1ИЯ электронной структуры на каталитические свойства металлов и сплавов. [c.503]

    Влияние медного п о д с л о я. В какой мере медь может замещать никель в декоративных покрытиях — пока еще окончательно не выяснено. Известно, что даже относительно толстое хромовое покрытие, нанесенное непосредственно на медь без промежуточного слоя никеля, имеет сравнительно небольшую стойкость против атмосферной коррозии. Также определенно установлено [2], что комбинированные. медноникелевые покрытия на стали или цинковых сплавах обладают худшими защитными свойствами, чем никелевые покрытия такой же толщины. Но влияние многослойности зависит от общей толщины покрытия и от характера атмосферы. [c.887]

    Выпарные аппараты можно строить также из меди, алюминия, свинца, бронзы и подобных ей сплавов. Свинцовые выпарные аппараты должны иметь массивный литой свинцовый корпус (а не освинцованный). Трубки в свинцовых аппаратах обычно медные, освинцованные. Для выпарки каустика широкое распространение получили поверхности нагрева из никеля и никелированные корпуса. Эмаль—неподходящий материал и аппаратов с эмалированными трубками не делают, как так эмалировать трубки малых диаметров невозможно. Вполне удовлетворительные аппараты могут быть построены с поверхностью нагрева из стекла пайрекс (Pyrex). За последние годы растет тенденция к применению некоторых видов хромоникелевых сталей для постройки выпарных аппаратов по мере накопления знаний о свойствах и способах обработки этих сталей их применение вероятно будет расти. При отсутствии других подходящих материалов корпуса выпарных аппаратов могут быть выложены кислотоупорным кирпичом на кислотоупорной замазке. [c.322]


Смотреть страницы где упоминается термин Медь также Сплавы медные свойства: [c.225]    [c.505]    [c.22]    [c.39]    [c.181]    [c.273]    [c.685]    [c.249]    [c.444]    [c.149]    [c.337]    [c.450]    [c.553]    [c.91]    [c.170]   
Разделение воздуха методом глубокого охлаждения Том 2 Издание 2 (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Медный

Медный свойства

Медь и ее сплавы свойства

Медь и медные сплавы

Медь сплавы

Медь, свойства

Сплавы медные

Сплавы свойства



© 2024 chem21.info Реклама на сайте