Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень превращения смешения

    На рис. -3 представлено изменение относительного времени пребывания, необходимого для достижения данной степени превращения в реакторах идеального смешения ( т) и идеального вытеснения tв) в случае протекания эндотермических, изотермических и экзотермических реакций. Из рисунка следует, что реактор идеального смешения предпочтительнее реактора идеального вытеснения для экзотермических реакций при низких и средних значениях х. При изотермических условиях и особенно при эндотермических реакциях реактор идеального вытеснения предпочтительнее реактора идеального смешения. [c.111]


Рис. 1-21. Средняя степень превращения для реакции третьего порядка а —идеальное смешение б —неполное смешение в —идеальное вытеснение обозначения см. рис. 1-18. Рис. 1-21. Средняя <a href="/info/766">степень превращения</a> для <a href="/info/362061">реакции третьего</a> порядка а —<a href="/info/321329">идеальное смешение</a> б —неполное смешение в —<a href="/info/321315">идеальное вытеснение</a> обозначения см. рис. 1-18.
    В частности, при А = В = = 0 = О ш константах к, = 0,025 к, = 0,2 к = 0,4 было получено, что в комбинированном реакторе при среднем времени пребывания Тс = 7,5 мин в зоне смешения и т = 5,7 мин в зоне вытеснения степень превращения А в С достигает 49%. Любой другой реактор или комбинация реакторов дают меньшую степень превращения. Так в двух последовательно соединенных реакторах смешения с временем пребывания Тс = 7,5 мин в каждом, величина степени превращения получается равной 45% в реакторе вытеснения при Хв == 8,75 мин она достигает 42%. [c.107]

    На рис. 38 показана кривая выделения тепла для простой обратимой экзотермической реакции, проте кающей в одноступенчатом реакторе идеального смешения. Для такого типа реакций максимально достижимая степень превращения уменьшается с повышением температуры. С точки зрения кинетики это означает, что с некоторой температуры начинает уменьшаться [c.160]

    Упражнение 11.20. Непрерывный процесс омыления проводится в двух последовательно соединенных реакторах идеального смешения. Реакция идет по второму порядку. Эфир и щелочь подаются в виде раствора с одинаковой постоянной молярной концентрацией, и общий объем системы сохраняется постоянным. Найдите, при каком отношении объемов реакторов выход продукта на единицу объема системы будет наибольшим, если суммарная степень превращения близка к 100%. [c.189]

    Упражнение IX.7. Покажите, что при постоянном р последовательность N реакторов идеального смешения с временем контакта pL/GN в пределе —> оо дает ту же степень превращения, что и трубчатый реактор. [c.265]

    Сформулируем следующую задачу. Дан реактор длиной Ь с составом исходной смеси g Q и массовой скоростью потока О. Требуется выбрать такую функцию Т (г) (О й 2 чтобы конечная степень превращения была максимальной. В этом (и только в этом) разделе мы направим продольную координату в противоположную сторону (рис. IX.4), что согласуется с обратной нумерацией реакторов идеального смешения в главе VII. Пусть [c.266]

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]


    В целом при выборе типа реактора следует исходить из конкретного механизма изучаемого процесса и, прежде всего, из типа реакций, их порядка, задаваемой степени превращения и т. д., учитывая при этом особенности реакторов полного вытеснения и полного смешения [93, 146]..  [c.37]

    И наоборот, когда Л оо и Р О, что соответствует режиму полного смешения в плотной фазе и отсутствию межфазного обмена, конечная степень превращения становится минимальной. [c.131]

    Упражнение 11.18. Предполагается провести реакцию 2А Р Q в одном или нескольких реакторах идеального смешения при постоянной объемной скорости потока 3,6 м 1ч. Исходная концентрация вещества А равна 40 кмоль1м , веществ Р и Q нулю константа скорости прямой реакции 0,9 м 1 кмоль-ч), а константа равновесия 16. Каков должен быть размер сосуда, чтобы конечные концентрации веществ Р ш Q составляли 85% от равновесных Если можно использовать сосуды емкостью 5% от емкости одиночного реактора, то сколько нужно малых сосудов, чтобы получить ту же степень превращения в последовательности реакторов  [c.189]

    Как следует из таблицы, при одинаковой производительности (и прочих равных условиях) одноступенчатый реактор смешения должен иметь объем в 100 раз, двухступенчатый реактор смешения — 7,9 раза, а трехступенчатый реактор смешения--15 3,8 раза больше объема реактора вытеснения, работающего в режиме, близком к идеальному. Однако при низких степенях превращения большие различия в объеме, обусловленные необходимостью компенсации проскока, станут значительно меньше. Так, при 2 = 0,90 одноступенчатый реактор смешения окажется только в 10 раз, а двухступенчатый реактор — в 3 раза больше реактора идеального вытеснения. [c.89]

Рис. 1-18. Средняя степень превращения для реакций нулевого порядка а — неполное смешение б — идеальное смешение и идеальное вытеснение Рис. 1-18. Средняя <a href="/info/766">степень превращения</a> для <a href="/info/362059">реакций нулевого</a> порядка а — неполное смешение б — <a href="/info/321329">идеальное смешение</a> и идеальное вытеснение
    Чтобы разобраться в этом вопросе, необходимо вспомнить, что понимают под реакцией первого порядка. Под реакцией первого порядка понимают такую реакцию, скорость которой, выраженная числом молей реагента, превращенного в единице объема за единицу времени, пропорциональна числу молей реагента в единице объема. Отсюда следует, что степень превращения реагента не зависит от его концентрации. Поэтому, если смешиваются два объема реагирующих жидкости или газа с различными концентрациями, то общее количество образовавшегося продукта будет через определенный период точно таким, каким оно было бы, если бы оба эти объема не смешивались. Утверждение справедливо только по отношению к реакциям первого порядка. Если бы скорость реакции зависела от концентрации в степени, большей единицы, то смешение двух количеств жидкости, одна из которых разбавлена более, чем вторая, привело бы к снижению общего количества продукта реакции, образовавшегося за рассматриваемый промежуток времени и наоборот, если скорость зависит от концентрации в степени от нуля до единицы, то смешивание более и менее концентрированных жидкостей увеличило бы общую скорость реакции. [c.101]

    Полученные выражения (4.22) и (4.23), аналогичные (4.19) и (4.20), показывают, что общий выход в реакторе смешения представляет собой сумму стационарных мгновенных выходов на всех ступенях с учетом степени превращения на каждой ступени. [c.123]

    Для случая Ь = о скорость реакции постоянна, не зависит от концентрации и времени. Как видно из рис. 1-18, степени превращения при идеальном вытеснении и идеальном смешении совпадают. Для третьей модели (неполное смешение) средняя степень превращения меньше, чем для других моделей. [c.36]

    Распределение времени пребывания в реакторе. Относительно низкая степень превращения, достигаемая в реакторах идеального смешения, объясняется сильной размытостью функции распределения времени пребывания в аппарате. Очевидно, доля молекул, выходящая из реактора в единицу времени, равна и/У = р. Следовательно, за некоторый малый промежуток времени Ат молекула может выйти из реактора с вероятностью рДт или остаться в нем с вероятностью [c.279]

    Различие между формулами ( 1.63) и ( 1.66) физически легко объяснимо, в случае, когда выполнено условие ( 1.61), реакция практически завершается за время, много меньшее того, которое необходимо частицам реагента для проникновения в застойные зоны. Поэтому в таком процессе влияние застойных зон на превращение реагента не чувствуется и параметры диффузионной модели должны быть такими же, как в случае, если бы застойные зоны были отгорожены от проточной части ячеек непроницаемыми перегородками. Другими словами, норовое пространство зернистого слоя в этом случае может рассматриваться как совокупность ячеек идеального смешения без застойных зон, объем которых равен объему проточной части зернистого слоя. Если же реакция идет настолько медленно, что выполняется условие ( 1.64), то за время, необходимое для достижения в реакторе заметной степени превращения, успевает установиться динамическое равновесие между частицами реагента, находящимися внутри и вне застойных зон. При этом застойные зоны, естественно, влияют на величин параметров и и II, определяемые формулами ( 1.66). Неравенства ( 1.61) и ( 1.64) можно переписать в более удобной форме, введя в них вместо константы скорости реакции к число ячеек по длине реактора N. Эти величины тесно связаны между собой, так как заметная степень превращения исходных веществ может быть достигнута на временах порядка к и длинах Ь — N1 — ц//с. Положив в формуле ( 1.53) вых/ вх = = 1, находим, что, эта степень превращения [c.232]


    Возможность потери устойчивости — один из существенных недостатков реакторов идеального смешения. Еще более очевидный их недостаток заключается в необходимости сильного увеличения среднего времени контакта для достижения заданной степени превращения сырья, по сравнению с временем периодического процесса или [c.278]

    Интересно сравнить степень превращения, достигаемую при одинаковых значениях параметров М, Я, в трех случаях, рассмотренных в этом и предыдущем разделах при идеальном смешении по катализатору (т. е. в кипящем слое), при прямотоке и противотоке реагирующей смеси и катализатора. Во всех трех случаях существует минимальное значение скорости подачи свежего катализатора, соответствующее критическому значению параметра Ж == 1, при котором возможно достижение степени превращения, как угодно близкой к единице в достаточно протяженном реакторе. При Л/ > 1 во всех трех рассмотренных случаях максимальная достижимая степень превращения 1 — с равна Сравнение кривых на рис. 11.16 и 11.17, а также асимптотических формул ( 11.148), ( 11.162) и ( 11.166) показывает, что при одинаковых значениях параметра М наименьшая эффективность процесса наблюдается в кипящем слое, а наибольшая — в движущемся слое при противотоке реагирующей смеси и катализатора. [c.322]

    Уравнение (У-И) использовано для нахождения степени превращения на макроуровне в реакторе идеального перемешивания. Результаты расчета для моделей идеального перемешивания и вытеснения представлены в табл. У-2, из которой следует, что для линейных систем (реакция первого порядка) степень сегрегации I не оказывает влияния на степень превращения, т. е. реактор идеального смешения для микро- и макросистем дает одинаковый выход. [c.107]

    Влияние условия состояния системы (микро- или макросостояние) существенно сказывается на степени превращения для нелинейных систем в реакторе идеального смешения (см. табл. М-2 и рис. У-2). [c.107]

    Влияние сегрегации. Сравнение состояния сегрегации с уровнем молекулярного смешения для эндотермических реакций показывает, что наивысшая степень превраш,ения достигается при сегрегированном состоянии реакций всех порядков. Разница между этим результатом и результатом, рассмотренным при изотермических условиях, для которых существен порядок реакции, обязана характеру изменения скорости процесса. В эндотермической системе скорость уменьшается с увеличением степени превращения вследствие расходования реагентов и уменьшения температуры системы. Для описанных выше систем температурный эффект был большим, чем компенсация, обусловленная порядком реакции. [c.113]

    Из рис. -2 следует, что объем реактора идеального смешения при одинаковой степени превращения для макросистемы больше, чем для микросистемы в случае реакций, порядок кото- [c.107]

    РИС. У-З. Изменение относительного времени пребывания в реакторах идеального смешения (im) и идеального вытеснения (/в) при разных степенях превращения для различных реакций и разных значениях Лi= в / д )i / — /1 = 1 2 п=2, М = - 3 — п = 2, Ж = 1,25 4 — п = 2, Л =2 5 — п=2. ЛГ=5 5 — л=2, М=10. [c.112]

    Для большинства экзотермических процессов скорость вначале увеличивается с возрастанием степени превращения вследствие повышения температуры в системе, но в конце снижается с уменьшением л в результате расходования реагентов. При сравнительно малых степенях превращения средняя скорость реакции в аппарате идеального смешения всегда выше, чем в аппарате идеального вытеснения. Однако по достижении некото- [c.112]

    Пример 1У-7. Для каскада реакторов идеального смепшиия, в ютором проводится реакция первого порядка, протекающая без измеисння числа нолей реагирующей смеси, определить выигрыш в суммарном реакционном объеме каскада по сравнению с одиночным реактором идеального смешения, рассчитанным на ту же степень превращения исходного реагента Л. [c.169]

    Сравнение состояния сегрегации с уровнем молекулярного смешения для экзотермических реакций приводит к противоположным выводам — наивысшая степень превращения соответствует уровню молекулярного смешения. Это объясняется тем, что в экзотермических системах начальная скорость увеличивается с возрастанием степени превращения вследствие повышения температуры системы. [c.113]

    С/ — величина, пропорциональная степени превращения в /-м реакторе смешения, молъ1м  [c.355]

    В заключение раздела отметим еще одну возможную постановку оптимальной задачи для каскада реакторов идеального смешения. Прн этом речь пойдет о тех случаях, когда задача оптимнзапии формулируется как требование достижения максимальной степени превращения в каскаде N аппаратов при условии, что его суммарный объем имеет определенное заданное значение [c.174]

    Эффективность работы батареи реакторов зависит от числа ступеней, объема каждой ступени и интенсивности смешения. При идеальном смешении концентрация одинакова во всем объеме каждой ступени и равна концентрации в отводимом потоке (так называемая теоретическая, или идеальная, ступень). Практически можно лишь в той или иной степени приближаться к идеальным условия1у1, причем степень приближения зависит от особенностей каждой отдельной системы. Конечно, всегда происходят локальные циркуляции перемешиваемой среды, что сокраш,ает время пребывания части материала в данной ступени. Несмотря на то, что для другой части материала время пребывания в указанной ступени больше по сравнению со средним временем, средняя степень превращения вещества несколько ниже, чем при идеальном смешении. Отношение разности концентраций на входе и выходе из ступени в практических условиях работы к разности этих же концентраций в идеальной ступени называется коэффициентом полезного действия ступени. В реакторах смешения к. п. д. обычно составляет от 60 до 90% однако никаких общих соотношений между переменными, влияющими на к. п. д., для расчета этого важного показателя работы реакторов не выведено. [c.119]

    Данное положение можно проиллюстрировать на примере, приведенном Крамерсом [13]. Система реакторов I представляет собой комбинацию реактора вытеонения с реактором смешения система реа1кторов II — жомбинадию реактора смешения с реактором вытеснения тех же размеров. При одинаковом расходе системы реакторов I и II имеют одно и то же распределение времен пребывания, но различные последовательности изменений концентраций во времени, а это приводит (за исключением особого случая — реакции первого порядка) к различным степеням превращения. Так, в системе реакторов I концентрация реагента постепенно снижается в реакто,пе вытеснения и затем резко падает до значения, преобладающего в реакторе смешения. Наоборот, в системе реакторов II резкое изменение концентрации имеет место между потоком, поступающим в реактор смешения, и реагентом, нах0дящим1ся в нем, после чего в реакторе вытеснения к0(нцентрация из меняется постепенно, что и показано на рис. 6. Если скорость реакции зависит, например, от произведения концентраций двух реагентов, то система реакторов II даст меньшую степень превращения, чем система реакторов I. Поскольку мгновенные скорости реакции зависят от произведения концентраций, средняя скорость реакции снижается больше, если внезапное изменение концентрации, происходящее в реакторе смешения, имеет место в самом начале процесса, а не в конце его (ам. также работу Данквертса [14]). [c.25]

    Концентрации веществ А и В равны изменением объема можно пренебречь. Требуемая степень превращения составляет 99%, и она достигается за 10 мин. в периодически действующем реакторе. Определить необходимое время пре-быв1а1ни я для одно- и двухступ нчатого реактора смешения. [c.103]

    Шение температуры является желательным, так как скоросте реакции 2 уменьшается с понижением температуры быстрее, чем скорость реакции 1, поскольку 2> ь И наоборот, в отношении реакций 3 и 4 желательна высокая температура, поскольку она повышает степень превращения X в V, а не в ф. Таким образом, учитывая одновременно оба фактора, приходим к выводу, что на начальных стадиях процесса, пока накапливается X, температуру Необходимо поддерживать достаточно низкой и значительно повышать ее на последующих стадиях, когда основной реакцией становится превращение X в У или р. Поскольку все четыре реакции протекают одновременно, хотя и (в различной степени, температура должна повышаться постепенно. Итак, если реакция проводится в реакторе вытеонения, то для обеспечения максимального выхода продукта должна поддерживаться оптимальная температурная последовательность. Если же реакция проводится в реакторе смешения, то для каждой ступени реактора должна существовать определенная оптимальная температура. [c.140]

    Оценка средних скоростей реакций позволяет объяснить эти выводы. Скорость эндотермических реакций уменьшается с увеличением степени иреврашения вследствие расходования реагентов и уменьшения температуры в системе. Средняя скорость реакции в аппарате идеального вытеснения (где она принимает среднее значение от максимального на входе и минимального на выходе) всегда выше средней скорости в реакторе идеального смешения кроме того, высокая степень превращения достигается только при высоких средних скоростях реакций. Поэтому при теплообмене реактор идеального вытеснения всегда предпочтительнее реактора идеального смешения. [c.112]

    Следовательно, если уравнение (111,22) применяется для систем со смешением, то рассчитанная степень превращения будет завышена при и > 1 и занижена при п < 1. Эта проблема детально рассматривалась Данквертсом и Цвитерингом . [c.100]


Смотреть страницы где упоминается термин Степень превращения смешения: [c.203]    [c.134]    [c.275]    [c.122]    [c.170]    [c.215]    [c.132]    [c.234]    [c.279]    [c.402]    [c.86]    [c.106]    [c.110]    [c.340]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.184 , c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Степень превращения

Степень превращения и степень превращения



© 2025 chem21.info Реклама на сайте