Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы реакторов

    Следует отметить, что селективность процесса значительно зависит от температуры, причем оптимальная температура реакции различна для различных типов реакторов. Например, для трех последовательно-параллельных реакций  [c.36]

    Проточные реакторы—наиболее распространенный тип реакторов, применяемых для экспериментального исследования гетерогенных каталитических процессов, потому что при стационарном состоянии легче контролировать режим и проводить анализы. Как отмечалось в начале книги, проточные реакторы могут быть интегрального и дифференциального типов. При анализе опытных данных, полученных при проведении процесса в дифференциальном проточном реакторе, можно пользоваться средними значениями парциальных давлений компонентов по всему объему аппарата или даже начальными значениями, что позволяет избежать осложнений, обусловленных изменением этих величин по мере протекания реакции. В том случае, если ни один из продуктов реакции не присутствует в исходной смеси, данные, получаемые при работе на дифференциальном реакторе, характеризуют начальную скорость процесса. [c.226]


    Применение носителей позволяет снизить содержание активных компонентов в катализаторах, что особенно важно в случае использования дорогостоящих металлов. В зависимости от типа реакторов катализаторы на носителях изготавливают в виде таблеток, шариков или микросфер. [c.209]

    Распространенный тип реакторов представляет собой сосуд, в который подаются реагенты и из которого удаляются продукты реакции, а содержимое сосуда перемешивается так, чтобы состав и температура реагирующей смеси были как можно более постоянными по всему его объему. Далее слово реактор будет употребляться без уточняющих определений применительно к тому типу реакторов, который разбирается в этой главе реакторы других типов будут именоваться полностью. Прежде всего мы выведем основные уравнения для простейше модели реактора и покажем, как с их помощью решаются задачи проектирования реактора. Некоторые экономические вопросы, связанные с проектированием, приведут нас к задачам оптимизации и управления реактором. Задачи управления потребуют исследования поведения процесса в нестационарном режиме. В конце главы будут рассмотрены недостатки простой модели идеального смешения в реакторе и вопросы расчета двухфазных процессов. [c.149]

    Изменения состава реагирующей смеси не случайны, а определяются двумя различными причинами. Первая причина — внешняя подача или удаление вещества пз системы вторая причина — внутренняя изменения, вызванные химической реакцией. Именно структура изменений второго типа рассматривается в данной главе. В то время как перенос вещества в пространстве описывается уравнениями материального баланса, соответствуюш,ими определенному типу реактора, внутренние изменения зависят только от самой химической реакции и поэтому одинаковы для реакторов всех типов. [c.14]

    Из сравнения кривых 1 я 2, соответствующих равенствам (11.6) и (П.12) ясно, что для достижения конверсии, равной 95% в реакторе непрерывного действия полного перемешивания, объем аппарата должен быть в 6,3 раза больший, чем объем реактора полного вытеснения или реактора периодического действия полного перемешивания. Для реакций более высокого порядка (кривые 3 ж 4) влияние типа реактора на степень конверсии еще более значительно. Для степени конверсии, равной 95%, объем непрерывно действующего реактора должен быть в 20 раз больше соответствующего реактора полного вытеснения. [c.31]


    Исследование адиабатических реакторов дает естественный переход от реакторов идеального смешения, рассмотренных в предыдущей главе, к трубчатым и периодическим реакторам, которым посвящены последующие главы. Назвать реактор адиабатическим значит определить способ проведения процесса, но ничего не сказать о типе реактора. Как реакторы идеального смешения (в этом мы уже имели случай убедиться), так и трубчатые реакторы могут работать в адиабатических условиях, т. е. без подвода или отвода тепла. В этой главе мы воспользуемся результатами, полученными нами для реакторов идеального смешения, и введем только простейшую модель трубчатого реактора. [c.214]

Рис. 111.22. Зависимость оптимального типа реактора от конечного состояния реагирующей смеси. Рис. 111.22. Зависимость <a href="/info/1811836">оптимального типа</a> реактора от <a href="/info/332450">конечного состояния</a> реагирующей смеси.
    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]

    Выбор реактора зависит от многих технологических, экономических и конструктивных факторов. Только анализ взаимного их влияния позволяет принять окончательное решение. Здесь мы ограничиваемся изучением влияния кинетики процесса на тип используемого реактора. Будет показано, что для некоторых видов превращения такие влияющие на способ проведения процесса факторы, как распределение времени пребывания, величины и распределения концентраций и температур, могут существенно влиять на выход и качество продукта. Рассмотрим только три основных типа реакторов — реактор периодического действия, трубчатый реактор полного вытеснения и проточный реактор полного перемешивания, [c.337]

    В целом при выборе типа реактора следует исходить из конкретного механизма изучаемого процесса и, прежде всего, из типа реакций, их порядка, задаваемой степени превращения и т. д., учитывая при этом особенности реакторов полного вытеснения и полного смешения [93, 146]..  [c.37]

    Следовательно, расчет химических реакторов по уравнениям диффузионной модели можно применять только к трубчатым аппаратам без насадки или с насадкой из неподвижного катализатора. Для всех иных типов реакторов, и, в частности, реакторов емкостного типа с принудительной или естественной циркуляцией он является недостаточно обоснованным. [c.80]

    В гомогенной газовой и жидкой системе с интенсивным перемешиванием скорость превращения обусловлена скоростью реакции. В следующей части данного раздела книги мы коснемся вопросов, относящихся к превращениям в потоке движущихся реагентов, а также рассмотрим влияние интенсивности перемешивания и неизотермических условий проведения превращений в разных типах реакторов на достигаемый результат процесса. [c.242]

    По данным исследований, приведенным в работе [142], наиболее оптимальным типом реактора для рассматриваемой схемы реакций является комбинация последовательно соединенных реактора смешения и реактора вытеснения. [c.106]

    Тип реактора, соответствующий данному потоку [c.199]

    Различают два важных типа реакторов непрерывного действия  [c.200]

    Реакторы непрерывного действия делятся на реакторы дифференциального и интегрального типов. В реакторах дифференциального типа длина пути реагентов и степень их превращения невелики это позволяет с достаточной точностью определять мгновенную скорость реакции. В реакторах интегрального типа реагенты проходят длинный путь и степень превращения их относительно велика. Оба типа реакторов имеют как свои преимущества, так и недостатки. [c.14]

    Независимо от типа реактора глубину слоя катализатора в рабочей зоне можно изменять путем удлинения или укорочения труб распределительного устройства. При значительной высоте столба под влиянием создаваемого им давления могут раздавливаться частицы катализатора, находящиеся в нижнем слое. Чем толще слой в мельче составляющие его частицы, тем большее гидравлическое сопротивление оказывает он проходящему газопаровому потоку. Учитывая отмеченное выше, при проектировании реакторов глубину слоя катализатора в рабочей зоне обычно принимают равной 4,5—6 м. [c.116]


    Влияние кинетики на выбор типа реактора [c.337]

    Существует много способов регулирования скоростей основных и побочных реакций. Например, с этой целью можно использовать селективный катализатор, который будет ускорять только главный процесс. Кроме того, соответствующим выбором типа реактора часто можно воздействовать на ход реакций в системе, о чем уже упоминалось в разделе УП1. Так, если в, системе проходят две параллельные реакции по схеме [c.372]

    Селективность основной реакции зависит от типа реактора и способа проведения процесса. На рис. 1Х-22 схематично представлены шесть способов проведения реакции такого типа. Результаты расчетов для отдельных реакционных систем при предположении, что к = 2, исходные вещества вводятся в процесс в стехиометрическом для основной реакции соотношении и конечная степень превращения компонента А равна 0,95, приведены ниже [35]  [c.373]

    Выход целевого продукта будет зависеть от типа реактора, числа ступеней бокового подвода исходного вещества А, отношения концентраций компонентов А и В, поступающих в зону реакции, а также отношения констант скоростей основной и побочной реакций ( 1 и к ). Влияние этих факторов на изменение относительного выхода продукта Р, рассчитанного на единицу суммарного выхода Р и X, изображено графически на рис. IX-23 и IX-24. [c.373]

    Формальное кинетическое уравнение включает в левой части выражение скорости реакции в дифференциальном или алгебраи — ческом виде в зависимости от типа реактора, а в правой части — функцию зависимости скорости реакции от концентрации реагентов. Кинетические закономерности сложных реакций описываются, как правило, системой из S дифференциальных или алгебраических уравнений для каждой из S независимых реакций. [c.22]

    Характерные показатели процесса, проводимого в различных типах реакторов, показаны в табл. 25. [c.106]

    При получении спиртов g— g могут быть использованы различные типы реакторов, описанных выше. В данном случае наиболее предпочтительными оказываются реакторы трубчатого типа. [c.112]

    Некоторые типы реакторов синтеза аммиака показаны на рис. Х1-8 (емг =акже табл. 79). Они имеют общую особенность, предусмотренную еще Бошем в первом построенном им реакторе  [c.360]

    О потоке газа или жидкости, проходяш,ем через реактор. Проведение реакций в потоке целесообразно в тех случаях, когда время реакции относительно невелико, а производительность аппарата высока и реагенты представляют собой газообразные вещества. При высоких концентрациях, когда возможны побочные реакции, применение проточных реакторов облегчает регулирование состава получаемого продукта. Большинство непрерывных процессов протекает в стационарном состоянии. Нестационарное состояние возникает при пуске и остановке аппаратов (см. стр. 132). Непрерывные процессы обычно проводят в гораздо более крупных масштабах, чем периодические. Некоторые типы реакторов непрерывного действия показаны на рис. 1У-1 и 1У-2. Характер зависимости концентраций компонентов смеси от времени и изменение концентраций по длине или высоте реактора показаны на рис. 1У-3. [c.113]

    Сосуды, снабженные приспособлением для перемешивания,— преобладающий тип реакторов, используемый в широких диапазонах давления и температуры при малой и средней производительности. Этот тип реакторов легко приспособить как для периодического, так и для непрерывного режима. Перемешивание осуществляется мешалками различных видов, главным образом турбинными или пропеллерными, или за счет принудительной цир- [c.354]

    Недостаток места не позволяет нам провести исследование реакторов с кипящим слоем. Исследование всех типов реакторов ведется по одному принципу, хотя объем каждой части исследования варьируется от одного тина реактора к другому. Прежде всего ставится модель реактора, выводятся описывающие ее уравнения, и тогда становится ясным характер задач расчета реактора. Там, где это возможно, рассматриваются вопросы оптимального проектирования реактора. Часто случается, что провести оптимальный расчет не сложнее, чем обыкновенный. Даже еслп найденное оптимальное решение неосуществимо на практике, оно всегда дает напвысшие возможные показатели процесса, к которым надо стремиться при реальном проектировании реактора. Расчет реактора связан, в первую очередь, с решением стационарных уравнений. В то же время важно изучить поведение реактора в нестационарном (переходном) режиме, так как найденный стационарный режим может быть неустойчивым. В последнем случае необходимо либо отказаться от проведения процесса в этом режиме, либо стабилизировать его с помощью надлежащего регулирующего устройства. В конце каждой главы мы возвращаемся к анализу допущений, сделанных нри постановке модели реактора, и исследуем влияние отклонений от идеализированной модели на характеристики процесса. [c.10]

    Четыре рассматриваемых типа реакторов связаны между собой как в физическом, так и в математическом отношении. Реактор с принудительным перемешиванием, или реактор идеального смешения, отличается от трубчатого реактора как по конструкции, так и по описывающим его уравнениям однако трубчатый реактор с достаточно интенсивным продольным перемешиванием потока приближается к режиму идеального смешения. Периодический реактор представляет собой реактор идеального смешения, в котором существует проток реагентов, но описывается он теми же уравнениями, что и простейшая модель трубчатого реактора. Термин адиабатический относится скорее к режиму реактора, чем к его конструкции, так как и реактор идеального смешения, и трубчатый, и периодический реактор могут быть адиабатическими. При исследовании различных типов реакторов нельзя в равной мере дать характеристику каждого реактора — частично из-за того, что различные вопросы изучены неодинаково полно, а частично из-за того, что некоторые проблемы трудно изложить на том доступном уровне, которого мы собираемся придерживаться в этой книге. Например, нестационарные уравнения для реактора идеального смешения являются обыкновенными дифференциальными уравнениями, и мы можем провести их анализ достаточно полно. Стационарный режим трубчатого реактора уже описывается обыкновенными дифференциальными уравнениями, а для описания его поведения в нестационарном режиме требуются дифференциальные уравнения в частных производных, анализ которых представляет весьма трудную задачу. Там, где это возможно, мы стараемся представить результаты более глубокого лнализа сложных задач в виде качественных описани11 и графиков, [c.10]

    Применение каскадных реакторов, работающих по принципу "автоохлаждения", упрощает и удешевляет установки С —алкилирования, так как позволяет отказаться от хладоагента. Ниже приводим сопоставительные выходные показатели С— алкилирования с двy [я типами реакторов. [c.145]

    Чтобы показать возможность непрерывного перехода к реактору полного вытеснения, на рис. 11-12 представлены кривые функции распределения F(t) = = (АВ/АВо)у для разного числа т реакторов смешения. На практике встречаются аппараты, условия работы в которых очень сложные (например, вращающаяся печь, крекинговая установка и т. д.), поэтому их трудно сопоставить с тем или иным идеальным типом реактора. В этих случаях можно применить методы Гофманна [81 и Ше-неманна [9], основанные на графическом расчете. [c.212]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    Разделив эти уравнения сторонами, получаем зависимость (VIII-378). Таким образом, в случае параллельных реакций одинакового порядка, селективность постоянна и не зависит от типа реактора. На треугольной диаграмме пути реакций изображаются прямыми линиями, соответствующими условию а = onst (рис. VIII-39). [c.339]

    Влияние типа реактора на селективность реакции более подробно рассмотрено в разделе VIII. [c.375]

    Основные типы реакторов вытеснения однотрубные, снабженные рубашкой кожухотрубные теплообменники и трубчатые печи, в которых трубы нагреваются за счет излучения и конвекции от топочных газов. Этот последний тип применяется главным образом для проведения эндотерл-.ичзских процессов, тогда как два других типа реакторов пригодны для осуществления эндотермических и экзотермических процессов. Реакторы в виде одной трубы не требуют специальных описаний. [c.359]


Смотреть страницы где упоминается термин Типы реакторов: [c.68]    [c.126]    [c.15]    [c.30]    [c.38]    [c.212]    [c.90]    [c.249]    [c.129]    [c.295]    [c.341]    [c.527]    [c.106]   
Смотреть главы в:

Физико-химическая технология глубокой переработки нефти и газа. Ч 2 -> Типы реакторов

Основы проектирования каталитических реакторов -> Типы реакторов

Катализ в промышленности. Т.2 -> Типы реакторов

Катализ в кипящем слое -> Типы реакторов

Технология глубокой переработки нефти и газа -> Типы реакторов

Очистка сточных вод -> Типы реакторов

Технология, экономика и автоматизация процессов переработки нефти и газа -> Типы реакторов

Катализ в промышленности Том 1 -> Типы реакторов

Химия технология и расчет процессов синтеза моторных топлив -> Типы реакторов

Химическая переработка ядерного топлива  -> Типы реакторов

Технология и оборудование процессов переработки нефти и газа -> Типы реакторов

Катализ в кипящем слое Издание 2 -> Типы реакторов


Очистка сточных вод (2004) -- [ c.215 ]




ПОИСК







© 2025 chem21.info Реклама на сайте