Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления диффузии

    С явлением диффузии макромолекул в растворе связано самопроизвольное распределение частиц по вертикали. Это распределение описывается гипсометрическим законом Лапласа  [c.45]

    Особый интерес представляют некоторые особенности диффузии и реакций в гелях. В водных студнях, в которых содержание воды доходит до 99% их массы, диффузия происходит почти с такой же скоростью, как в чистой воде. Однако явление диффузии в гелях в чистом виде наблюдается сравнительно редко. Обычно оно осложняется адсорбционными, электрическими или химическими явлениями. Рассмотрим кратко основные факторы, влияющие на скорость диффузии в гелях. [c.394]


    Несмотря на недостатки теории Нернста—Бруннера (невозмож-лссть теоретического расчета предельной плотности тока, физическая несостоятельность модели диффузионного слоя), потребовалось почти сорок лет для создания новой, более совершенной теории диффузионного перенапряжения. Успехи в этом направлении были, до тигнуты благодаря применению к явлениям диффузии основных положений тепло- и массопередачи, в частности законов гидродии , [c.311]

    Аналоговое моделирование основано на аналогиях, существующих в описании некоторых фильтрационных процессов с другими физическими явлениями (диффузией, процессом переноса тепла, электрического тока и т.д.). Основная причина существования аналогий-это однотипность уравнений, описывающих физические процессы различной природы. Аналогия устанавливается на основании того факта, что характеристические уравнения (например, закон Дарси и закон Ома) выражают одни и те же принципы сохранения (массы, импульса, энергии, электричества и т.п.), лежащие в основе многих физических явлений. Существующие аналогии позволяют разрабатывать аналоговые модели. [c.376]

    Трактовка кинетических данных для гетерогенной каталитической реакции, протекающей на пористом катализаторе, всегда осложняется явлением диффузии внутрь пор и из них. Андерсон [2] показал, что при применении плавленых железных катализаторов (на основе магнетита) активно участвует в синтезе только внешний слой катализаторного зерна толщиной 0,1 мм. Эти данные дают основание предполагать, что ббльшая часть пор таких катализаторов в условиях синтеза ие работает. [c.522]

    Процесс очистки экстракцией основан на явлениях диффузии и поэтому его эффективность зависит от размера гранул очищаемого продукта. Более того, показано что при одинаковых размерах гранул эффективность экстракции зависит от характера кристаллов. Авторы работ описали интересные опыты. Проведя синтез дифенилолпропана в присутствии H I и отделив непрореагировавшие компоненты дистилляцией, они кристаллизовали расплавленный дифенилолпропан-сырец двумя путями быстрым охлаждением на барабане и медленным охлаждением естественным путем, для чего расплавленный дифенилолпропан выливали на стеклянный поднос тонким слоем. В последнем случае застывший дифенилолпропан [c.167]

    Таким образом, диффузия в растворах электролитов — более сложный процесс, чем молекулярная диффузия, так как она является результатом действия не только градиента концентрации, но и градиента электрического поля, обусловленного диффузионным потенциалом. Одновременное наложение двух градиентов делает явление диффузии в растворах электролитов более сложным и по сравнению с электропроводностью, возникновение которой связано только с одним градиентом поля. [c.44]


    На общую степень внутреннего использования поверхности катализатора т] влияют большие совокупности физико-химических явлении (диффузия, теплопроводность, массо- и теплообмен, геометрия зерна). Зависимости общей степени внутреннего использования поверхности т] от последних для упрощения анализа целесообразно представить в виде функции от некоторых безразмерных комплексов от модуля Тиле ф, фактора экзотермичности р, критериев Нуссельта Хи, Шервуда и т. п. [c.28]

    Явление диффузии лежит в основе всех процессов, связанных с переносом и обменом массы вещества. В частности, массообменные процессы в топливохранилищах и самолетных баках нельзя рассчитывать без данных о коэффициенте диффузии. В то же время экспериментальные данные по этому показателю имеются для весьма ограниченного ассортимента топлив [ЬО, 77—79]. Из реактивных топлив значения коэффициента диффузии паров определены только для топлива Т-1 [79]. [c.66]

    Сопротивление диффузии частиц и сопротивление миграции частиц в электрическом поле имеют одну и ту же природу, что указывает на общность механизма диффузии и электропроводности и позволяет использовать данные об электропроводности при изучении и объяснении явлений диффузии. [c.34]

    Очевидно, что изучение реакции гидрирования в присутствии комплексных соединений переходных металлов ценно тем, что процесс не осложнен явлениями диффузии внутри пор, характером и параметрами поверхности и др., что имеет место в случае гетерогенного катализа. [c.137]

    Все эти данные, полученные для гомогенных катализаторов, т. е. для условий, не осложненных явлениями диффузии, адсорбции и десорбции, характеризуют явление в более чистом виде, подтверждая, в частности, промежуточное образование л-комплексов. Характерно, что гидрирование бензола на меди, хроме, марганце, ванадии, титане отмечается впервые, оно не наблюдалось на гетерогенных катализаторах. [c.138]

    Если в газовых смесях анализ явлений диффузии базируется на уравнениях Максвелла—Стефана, то для жидкой фазы ввиду недостаточной разработки теории растворов подобное обобщенное уравнение отсутствует. Ряд авторов предлагают использовать для описания диффузии в жидкой фазе те же уравнения, что и в газовой фазе [54, 65]. Другие считают возможным использование первого закона Фика. [c.346]

    Твердофазовые реакции протекают очень медленно и практически никогда не доходят до конца. В отдельную группу они выделены потому, что характер их во многом специфичен и отличен от характера реакций в жидкостях и газах. Реакции в твердой фазе сопровождаются не только химическими, но и разнообразными физическими и физико-химическими процессами. Например, еще до начала химического взаимодействия или одновременно с ним могут протекать такие процессы, как спекание, рекристаллизация, полиморфные превращения и т. п. С того момента, когда в результате химического взаимодействия появляются твердые продукты реакции, пространственно разделяющие исходные вещества, дальнейшее течение процесса начинает определяться диффузией через слой продуктов реакции. В подавляющем большинстве реакций, происходящих в твердых телах, химическое взаимодействие на межфазовой границе при повышенных температурах протекает достаточно быстро, скорость же суммарного процесса определяется процессами переноса и диффузией. Явления диффузии, спекания, рекристаллизации оказывают существенное влияние не только на ход реакций, НО и на свойства и количество конечных продуктов химического взаимодействия в твердых телах. [c.204]

    Изложены принципы построения топологических структур связи химических реакций и сопутствующих явлений диффузии и [c.181]

    Шервуд Т. К., Явления диффузии при гетерогенном катализе. Теорети- [c.547]

    Опыт 76. Явление диффузии в коллоидных растворах [c.169]

    В опыте В за счет явления диффузии происходит выравнивание концентраций обоих растворов, поэтому э. д. с. такого элемента постепенно снижается и при полном выравнивании концентраций достигает нулевого значения. [c.133]

    Особый интерес представляют некоторые особенности диффузии и реакций в гелях. В водных студнях с содержанием воды до 99% их массы диффузия происходит почти с такой же скоростью, как и в чистой воде. Однако явление диффузии в гелях в чистом виде наблюдается сравнительно редко. Обычно оно осложняется адсорбционными, электрическими или химическими явлениями. [c.230]

    Явление диффузии играет чрезвычайно важную роль в жизнедеятельности организмов, в а б л и ц а 12. Молекулярные массы М процессах перемещения питательных веществ и продуктов обмена в тканевых жидкостях. [c.95]

    Резкое отличие суспензий от коллоидов проявляется в молекулярно-кинетических и оптических свойствах. Явления диффузии и осмоса не свойственны суспензиям, прохождение света через суспензии не вызывает опалесценции, а проявляется в виде мутности, так как световые лучи преломляются и отражаются частицами суспензии, а не рассеиваются. [c.452]


    Таким образом, флуктуация представляет собой явление, как бы обратное явлению диффузии, хотя оба они — результат теплового движения. Если диффузия как всякий самопроизвольный процесс должна, в соответствии со вторым началом термодинамики, идти необратимо, то флуктуация указывает на то, что второе начало термодинамики имеет статистический характер, т. е. оно неприменимо к отдельным индивидуальным частицам или к малому числу их. В обоих явлениях мы видим одно из доказательств справедливости закона материалистической диалектики—единства противоположностей. [c.303]

    Т. е. коэффициент диффузии D численно равен количеству вещества, продиффундировавшего через единицу площади в единицу времени при градиенте концентрации, равном единице. Из уравнения (111,4) также следует, что коэффициент диффузии измеряется в см /с. Однако очень часто при рассмотрении явлений диффузии в связи с медленностью процесса за единицу времени берут не секунду, а сутки. [c.59]

    При демонстрации медленно протекающих процессов, для наблюдения которых в обычных условиях требуются часы, сутки и даже месяцы. С помощью замедленной съемки эти явления могут быть показаны на экране за несколько минут и даже секунд. Например, явление диффузии или коррозии металлов. [c.106]

    Все перечисленные явления — диффузия, электрофорез, седиментация— объединяются общим понятием процессы переноса вещества. Помимо этого в химических системах приходится иметь дело с другими процессами переноса. Перенос энергии теплового движения из области с более высокой в область с более низкой температурой — теплопроводность, или, в более широком смысле, теплопередача — приводит к выравниванию температуры в системе. При механическом воздействии на некоторый слой жидкости или газа, например при действии лопасти вращающейся мешалки, молекулам слоя сообщается дополнительный импульс, приводящий слой в движение. Этот импульс частично переносится к молекулам прилегающих слоев, увлекая их вслед за начавшим перемещаться слоем. Перенос импульса к молекулам жидкости или газа в направлении, перпендикулярном направлению перемещения, обусловливает наличие у них вязкости (см. 8.2). [c.323]

    Кинетическая теория. Молекулы газов и жидкостей находятся в состоянии непрерывного беспорядочного движения. Это движение проявляется в давлении газов, осмотическом давлении растворов, явлении диффузии и других свойствах молекул, количественно описываемых кинетической теорией идеальных газов. Для реальных газов, жидкостей и растворов положения кинетической теории применимы лишь условно. [c.333]

    Теория теоретических тарелок. В этом случае стационарную фазу делят на отдельные отрезки — ступени разделения. Отрезок определяется таким образом, что в нем устанавливается состояние полного равновесия между фазами. По аналогии с процессом дистилляции для таких ступеней введено название теоретических тарелок (ТТ). В современной литературе применяют термин ступени разделения, который связан с фракционным распределением. При условии, что установление равновесия происходит мгновенно, функция сорбции линейна, температура в области стационарной фазы и скорость подвижной фазы постоянны и явлением диффузии можно пренебречь, выводят математические соотношения между временем удерживания, коэффициентом сорбции, числом ступеней разделения, длиной слоя сорбента для разделения и т. д. Из данных хроматографического анализа поэтому можно рассчитать число теоретических тарелок для данного процесса разделения или коэффициент сорбции [11]. [c.347]

    Диализ [76]. В процессе диализа можно разделить частицы коллоидных растворов, используя явление диффузии их через мембрану в чистый растворитель. Движущей силой процесса является неравенство концентраций ионов по обеим сторонам мембраны, которое при определенных условиях (постоянное обновление чистого растворителя, достаточное перемешивание растворов по обеим сторонам мембраны) зависит от концентраций веществ, подвергающихся диализу, и от свойств самой мембраны. Скорость уменьшения числа частиц п, находящихся в растворе, пропорциональна поперечному сечению мембраны д и концентрации частиц [c.385]

    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]

    Открытие и изучение изотопов оказало большое влияние на развитие физики, химии и других естественных наук. Многие радиоактивные изотопы нашли широкое применение в физике, геологии, технике, в разнообразных научных исследованиях, в биологии и медицине. Радиоактивные изотопы применяются для изучения износа деталей машин и инструмента, для автоматического контроля за ходом производственных процессов, контроля качества продукции, для изучения строения молекул и механизмов химических реакций, для исследования явлений диффузий в газах, жидкостях [c.23]

    Явление диффузии наблюдается во всех дисперсных системах, начиная от молекулярно-дисперсных до систем с видимыми в обычный микроскоп частицами, причем различие между этими системами, как ранее было отмечено, носит только количественный, а не качественный характер и выражается в различной скорости процесса, зависящей от величины и формы частиц. Поэтому то обстоятельство, что одни растворен- [c.308]

    Большими достоинствами отличается широко применяемый на практике диффузионный способ покрытия, который основан на явлении диффузии атомов защитного вещества в поверхностный слой защищаемого изделия (при высокой температуре). При этом образуется поверхностный сплав. [c.368]

    Диффузия относится к процессам переноса. Механизм явления диффузии в жидкостях близок механизму диффузии в твердых телах, но существенно отличается от процессов диффузии в газах. В газах основным является представление о длине свободного пробега, теряющее смысл в жидкостях. Кроме того, сильт взаимодействия между молекулами оказывают сильное влияние на характер их движения. Феноменологическая теория диффузии вводит эмпирический параметр — коэффициент диффузии Z), определяемый свойствами растворителя и растворенного вещества. В микроскопической статистической теории проводится расчет iiToro коэффициента. Связь микроскопического и макроскопического описаний диффузии осуществляется через коэффициент ди( )фузии D. [c.46]

    В соответствии с диффузионной моделью продольное перемешивание считается статистически эквивалентным явлению диффузии, происходящему в направлении потока, которое описывается обобщенным законом Фика, Величина коэффициента диффузии в направлении потока D2 является мерой значимости явления пере-Л1ешивания, [c.120]

    Диаграмма состоит из двух взаимосвязанных частей векторной п скалярной. Первую часть представляют векторные элементы и связи, отражающие явления переноса массы л компонентов (выделены полужирно). Вторую часть представляют скалярные элементы и связи, отражающие перенос тепла. Три инфинитезимальные операторные элемента С и связанные О-структурой слияния, соответствуют в любом элементарнол объеме пористой среды явлению диффузии г-компонентной смеси с коэффициентами диффузии 3 I (г = 1, 2,. . ., (.) (отражается элементом аккумуляции [c.229]

    Очевидно, число таких диффузионных цепочек в полной диаграмме связи сопряженных явлений диффузии и химических нреврап],е-ний равно обш ему числу компонентов в системе. Полная связная диаграмма является результатом сопряжения диаграммных сетей вида (2,58) с помощью двухсвязных К-элементов, отражающих диссипацию химической энергии, и ТР-элементов, учитывающих стехиометрию реакций [3]. [c.132]

    Изложенный принцип топологического моделирования совмещенных явлений диффузии и химических реакций может быть успешно применен при исследовании физико-химических явлений, протекающих в полунепроницаемых пленках или мембранах. [c.132]

    Явление диффузии универсально и характерно для истинных растворов и дисперсных систем с достаточно малыми размерами частиц дисперной фазы, чтобы обеспечить возможность их участия в броуновском движении. [c.19]

    Смеси газов и растворы имеют ряд общих свойств и в области явлений диффузии. Частицы тех и других способны самопроизвольно равномерно распределяться по всему объему. Особенно это свойство характерио для сильно разбавленных растворов. Поведение молекул неэлектролита в таком растворе аналогично поведению идеального газа. Применив для обобщения результатов измерений осмотического давления законы термодинамики и молекулярио-кинетическую теорию газов, Вант-Гофф впервые установил, что между состоянием вещества в очень разбавленном растворе и газообразным состоянием имеется полное качественное и количественное сходство (опыт 18). Другими словами, осмотическое давление сильно разбавленных растворов подчиняется законам идеальных газов. [c.38]

    Так как коллоидные частицы обладают тепловым движением, то для них характернс явление диффузии. Связь между средним смещением частицы — А за время т и коэффициентом диффузии была установлена теоретически Эйнштейном и выражается следующей формулой ]/2/>о, где О — коэффициент диффузии. Коэффициент диффузии равен количеству вещества, переходящему за 1 с через сечение в 1 см , когда разность концентрации [c.76]

    Из сказанного следует, что флуктуации представляют собою явление как бы обратное явлению диффузии, хотя оба они обусловлены тепловым движением. При диффузии происходит выравнивание концентраций в макрообъемах, а флуктуации представляют собою спонтанное отклонение концентрации от среднего его значения в микрообъемах. [c.66]

    На заре развития коллоидной химии считалось, что коллоидным растворам не присущи явления диффузии и осмоса. Эта особенность коллоидных растворов считалась одной из их отличительных признаков. Однако использование более точных методов исследования показало, что это не так. Более того, изобретение з льтрамикроскопа (1903 г.) позволило непосредственно наблюдать движение отдельных коллоидных частиц, связать интенсивность этого движения с величиной коэффициента диффузии. Наблюдение за поведением отдельных коллоидных частиц позволило проверить и подтвердить расчеты, базирующиеся на молекулярно-кинетичес1шй теории, формулы диффузии, седиментационного равновесия и т. д. [c.397]

    Из этих данных вытекает, что молекулы газа обладают огромными скоростями, порядка сотен метров в секунду. Наблюдения явления диффузии газов между тем показали, что скорости распространения газов сравнительно ничтожны. Указанный факт являлся серьезным аргументом против кинетической теории газов, пока не была детализована картина движения молекул. Было высказано предположение, что, хотя молекулы действительно двигаются с огромной скоростью, однако вследствие непрерывных столкновений с другими молекулами, отрезки пути, отвечающие свободному движению молекул, весьма малы. Реально молекулы двигаются по зигзагообразным линиям, состоящим из коротких отрезков прямой. В результате этого молекулы, несмотря на свою большую скорость, незначительно удаляются от своего первоначального положения. Расстояние, проходимое молекулод. ш.. етрлкнд.ц нил,,, к столкновению с другой молекулой, получило название свободного пробега. Расстояния свободного пробега молекулы в газе разнообразны по своей величине и обычно на практике ограничиваются [c.37]


Смотреть страницы где упоминается термин Явления диффузии: [c.135]    [c.25]    [c.397]    [c.109]    [c.7]    [c.226]   
Смотреть главы в:

Оксидный катод -> Явления диффузии




ПОИСК







© 2024 chem21.info Реклама на сайте