Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Повышение температуры кипения

    Температура замерзания и кипения растворов. При растворении В растворителе нелетучего вещества давление пара растворителя над раствором уменьшается, что вызывает повышение температуры кипения раствора и понижение температуры его замерзания (по сравнению с чистым растворителем). [c.131]

    Исследование свойств разбавленных растворов неэлектролитов пока ало, что понижение давления пара, повышение температуры кипения и понижение температуры замерзания обусловлены только числом растворенных частиц в определенном количестве данного растворителя и не зависят от природы растворенного вещества. В этом заключается сущность законов Рауля. [c.131]


    Цетановые числа дизельных топлив зависят от их углеводородного состава. Парафиновые углеводороды являются лучшими компонентами для получения дизельного топлива, т. е. они имеют самые низкие температуры самовоспламенения и, следовательно, самые высокие цетановые числа. Самые низкие цетановые числа у ароматических углеводородов, более стойких к термическому распаду и самовоспламенению. Нафтеновые и олефиновые углеводороды занимают промежуточное положение. Цетано%ые числа зависят также от, температуры кипения фракций с повышением температуры кипения цетановое число повышается. [c.37]

    Диссоциация электролита приводит к тому, что общее число частиц растворенного вещества (молекул и ионов) в растворе возрастает по сравнению с раствором неэлектролита той же молярной концентрации. Поэтому свойства, зависящие от общего числа находящихся в растворе частиц растворенного вещества (коллигативные свойства), такие, как осмотическое давление, понижение давления пара, повышение температуры кипения, понижение температуры замерзания, проявляются в растворах электролитов в большей [c.127]

    Средняя молярная температура кипения ниже средней массовой и средней объемной температур, так как при перегонке отгоняются в первую очередь фракции с меньшим молекулярным весом и изменение молеку-лярпого веса с повышением температуры кипения фракции более значительно, чем измеиепие плотности. [c.11]

    Чем объясняется повышение температуры кипения с возрастанием порядкового номера благородного газа  [c.72]

    Отметим, что tz пропорционально 1п pjp, этой же величине пропорциональны величины ДТ повышения температуры кипения и понижения температуры затвердевания раствора [см. уравнения (VI, 16) и (VII, 20а)1, которые, таким образом, оказываются пропорциональными осмотическому давлению. Подставив в уравнение (VII, 35а) значение pi/p[ по уравнению Рауля, получим для [c.244]

    Повышение температуры кипения раствора, А кип [c.118]

    Р с ш с н II е. Кислород более электроотрицательный элемент, чем сера. Поэтому между молекулами воды возникают более прочные водородные связи, чем между молекулами сероводорода , Разрыв этих связен, необходимый для перехода воды в газообразное состояние, требует значительной затраты энергии, что и приводит к аномальному повышению температуры кипения воды. [c.71]


    Коллнгативные свойства растворов. Условия их использования для определения молекулярного веса растворенных веществ. Величина осмотического давления разбавленных растворов, в соответствии с уравнением (VII, 31), пропорциональна числу молекул всех веществ, растворенных в данном объеме раствора, и не зависит от природы растворенных веществ. Это же относится и к величинам некоторых других свойств разбавленных растворов, таких, как относительное понижение давления пара растворителя, понижение температуры затвердевания, повышение температуры кипения. Все перечисленные свойства разбавленных растворов носят название коллигативных свойств. [c.247]

    Для большинства ранее проводившихся определений молекулярного веса углеводородов применялись простые формы криоско-пического метода (понижение температуры замерзания [348—353]). Было использовано много растворителей, но для лучших из них точность определения составила 1—2 %. Эбулиоскопические методы (повышение температуры кипения) обычно более быстрые и такие же точные [354—358]. Наконец был сделан обзор но сравнению этих двух методов в нескольких различных нефтяных лабораториях. Низкие молекулярные веса обычно определяют по методам плотности паров [359—360]. Все эти методы дают ряд средних молекулярных весов, определяемых [c.206]

    Следовательно, с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. При этом повышению температуры кипения соответствует весьма резкое уменьшение размера кристаллов. Для иллюстрации этого на рис. 8 приведена серия микрофотографий последовательных фракций одной из парафинистых нефтей, закристаллизованных в равных условиях. Из рис. 8 видно, что даже при относительно небольшом повышении температуры кипения фракции, например на 50° (от 400 —450° до 450—500°), уменьшаются линейные размеры кристалликов парафина более чем в 2 раза. [c.65]

    Для растворов электролитов понижение температуры замерзания и повышение температуры кипения оказываются всегда больше теоретически вычисленных. Например, для раствора, содержащего в 1000 г воды 1 моль Na l, понижение температуры замерзания (А = = 3,36° С) почти в два раза больше, чем для аналогичных растворов неэлектролитов. В настоящее время этот факт объясняют увеличением числа сольватированных частиц, возникающих за счет ионизации электролита. В свое время попытки объяснить указанное явление способствовали выдвижению Аррениусом гипотезы ионизации, превратившейся далее в одну из важнейших теорий современной химии. [c.132]

    В общем виде зависимость понижения температуры замерзания А з и повышения температуры кипения разбавленных растворов от концентрации неэлектролита можно записать так = к с [c.131]

    Исследование количественного распределения пяти- и шестичленных цикланов в норийском бензине показало, что с повышением температуры кипения фракции повышается в ней содержанне циклопентановых - углеводородов и понижается содержание парафиновых углеводородов. [c.158]

    С повышением температуры кипения фракций, содержание парафиновых углеводородов, за исключением фр. 122— 150°, уменьшается. [c.177]

    Комплексообразование целесообразное по условиям равновесия проводить при высокой концентрации карбамида и относите/ ьно низкой температуре (20— 45 °С), что является важным досто — ин твом процесса. Другим существенным преимуществом карба — мирной депарафинизации является значительно более высокая сеу ективность по отношению к нормальным парафиновым углеводородам, что определяет большой выход денормализата (75 — 90 % ма с.). Однако селективность карбамида снижается с повышением температуры кипения сырья депарафинизации. Поэтому карба — мидная депарафинизация применяется преимущественно для получения низкозастывающих дизельных топлив и маловязких масел. [c.271]

    С повышением температуры кипения нефтяных фракций в них увеличивается содержание нейтральных и уменьшается содер — жание основных азотистых соединений (табл.3.2). [c.72]

    При изучении группового состава сероорганических соединений и их содержания в дистиллятах арланской и волховской нефтей установлено следующее. С повышением температуры кипения фракций увеличивается содержание в них сероорганических соединений в сероорганических соединениях фракций, выкипающих до 200 °С, преобладает сульфидная сера, а во фракциях, выкипающих выше 300 °С, —остаточная сера. [c.122]

    С повышением температуры кипения и молекулярного веса масляных фракций нефти относительное содержание и-алканов в находящихся в данной фракции твердых углеводородах уменьшается при возрастании содержания углеводородов изостроения и циклических структур. [c.56]

    Благодаря высокому содержанию ароматических углеводородов лигроины, полученные при гидрокрекинге нафтеновых фракций, применяются как растворители осадков и лаков. Такому использованию лигроинов гидрокрекинга способствует обнаруженная у них тенденция с повышением температуры кипения фракций увеличивать содержание ароматических углеводородов. Этот вывод вытекает из характера изменения свойств, продемонстрированных в табл. П-7 [215. Такие лигроины очень похожи на растворители, полученные из каменноугольного дегтя. [c.96]


    Пользуясь приведенными микрофотографиями фракций (см. рис. 8), нужно еще раз отметить, что, несмотря на резкое уменьшение размеров кристаллов парафина при повышении температуры кипения фракции, форма их остается неизменной, и они представляют тонкие мелкие пластинки, а форма мнимых иголочек [c.65]

    Характер смол, выделенных из различных дистиллятов нефти, неодинаков (табл. 38). Смолы, выделенные иа керосиновой фракции — жидкие, а выделенные из гудрона — твердые. Смолистые вещества, выделенные из других фракций, занимают по консистенции промежуточное положение. С повышением температуры кипения фракций плотность и молекулярный вес смол постепенно повышаются. Содержание водорода в смолах, выделенных из различных фракций, остается практически без изменения содержание же углерода в смолах возрастает с 78 до 85 % в соответствии с увеличением температуры выкипания фракций, из которых выделены эти смолистые вещества. [c.64]

    В случае адсорбции на угле с увеличением молекулярного веса нормальных парафинов увеличивается адсорбируемость, в то время как на силикагеле она остается постоянной [26]. Для газов адсорбируемость (сила адсорбции) в основном увеличивается с повышением температуры кипения (понижение давления пара), хотя влияние структуры молекул может в некоторых случаях менять нормальный порядок. Так, например, нри адсорбции на силикагеле пары толуола сильнее адсорбируются, чем нары к-октана, хотя точки кипения этих соединений соответственно 110,6 и 125,7°С. В случае смесей парафиновых и олефиновых газов олефины немного сильнее адсорбируются на силикагеле, чем можно было бы предполагать по их упругостям паров при адсорбции на угле структура молекулы имеет меньшее значение [27]. [c.264]

    Можно утверждать, что 100%-ные нафтеновые молекулы, т. е. нафтены без алифатических боковых цепей, и 100%-ные ароматические молекулы встречаются в тяжелых фракциях лишь в незначительных количествах. Если молекулярный вес нефтяных фракций высок, то почти все молекулы (за исключением молекул парафиновых углеводородов) построены из различных структурных групп, каждая из которых является характерным представителем определенного класса соединений. Так как в больших молекулах возможны многочисленные комбинации различных классов, то по мере повышения температуры кипения эти классы все более различаются по характеру. [c.364]

    Для бензина Уэйте содержание алканов уменьшается, содержание цикланов заметно возрастает с повышением температуры кипения. [c.19]

    Уравнение (VI, 19) дает возможность вычислить молекулярный вес растворенного вещества М. , если известно повышение температуры кипения АТ раствора определенной весовой концентрации. Метод определения молекулярного веса по уравнению (VI, 19) называется обычно эбуллиоскопией (более точным является термин эбуллиометрия). [c.200]

    Растворимость нафтенов несколько больше, чем парафинов, и возрастает с температурой, уменьшаясь с ростом их молекулярного веса (т. е. с повышением температуры кипения используемых фракций при постоянной концентрации ароматических углеводородов в экстракте). [c.61]

    С повышением температуры кипения нефтяных фракций молярная масса (М) растет. Эта закономерность лежит в основе формулы Б.М. Воинова  [c.81]

    Отсюда искомая величина АТ=Т—Tq (повышение температуры кипения)  [c.199]

    Распределение их по фракциям нефти различно. В легких нефтях содержание аренов с повышением температуры кипения фракций, как правило, снижается. Нефти средней плотности нафтенового типа характеризуются почти равномерным распределением аренов го фракциям. В тяжелых нефтях содержание их резко возрастает с говышением температуры кипения фракций. [c.66]

    В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слабораз — ветвленного строения. По мере повышения температуры кипения их фракций в них появл5[ются алифатические кислоты сильноразвет — пленной структуры, например, изопреноидного типа, а также нафтеновые кислоты. Последние составляют основную долю (до 90 %) от всех кислородсодержа[цих соединеиий в средних и масляных фракциях. Наиболее богаты ими Бакинские, Грозненские, Эмбен — ские. Сахалинские и Бориславские нефти (содержание их достигает до 1,7 % масс.). Содержание фенолов в нефтях незначительно (до 0,1 % масс.). [c.74]

    Супсинский бензин богат ароматическими углеводородами, содержание которых возрастает в основном по мере повышения температуры кипения фракций. [c.139]

    По мере повышения температуры кипения и молекулярного веса масляной фракции все большая доля углеводородов даже при меньшей симметричности и простоте структуры приобретает способность кристаллизоваться при повышенных температурах и переходит, таким образом, в категорию твердых углеводородов. Поэтому относительное содержание к-алканов в составе твердых углеводородов с повышением их температуры кипения снижается в результате увеличения содержания твердых циклических углеводородов и, возможно, изоалканов. Здесь нужно отметить, что и общее содержание к-алканов во всей массе данной фракции с повышением ее температуры кипения обычно также снижается. Это обусловливается тем, что с возрастанием молекулярного веса относительная численность к-алканов среди других возможных изомеров с равным числом атомов углерода резко уменьшается. Поэтому для большинства нефтей содержание м-алканов во фракциях светлых продуктов значительно больше, чем в масляных фракциях, а в остаточных продуктах меньше, чем в дистиллятных масляных фракциях. Вместе с этим в тяжелых остаточных продуктах вероятность существования твердых циклических углеводородов и твердых алканов изостроения возрастает настолько, что эти углеводороды могут оказаться уже главным компонентом твердых углеводородов, которые входят в состав этих продуктов. [c.57]

    Подобное явление может наблюдаться и у испарителей. Однако в длиннотрубных вертикальных испарителях, обогреваемых конденсирующимся паром и применяемых для концентрирования растворов, температура кипения раствора может в значительной степени меняться по высоте трубок. Эти изменения могут быть вызваны либо повышением точки кипения раствора (например, в сахарном соке более, чем на 10° С) либо воздействием гидростатического давления на точку кипения, которое может быть у вакуумных испарителей очень значительным (например, при рабочем давлении 0,2 ата и длине трубок в вертикальном испарителе, равной 2 м, повышение температуры кипения в нижнем конце трубки по сравнению с температурой кипения вверху трубки для воды составляет 12°С). [c.16]

    Так же, как и низкомолекулярные хлорпитропарафины, высокомолекулярные геминальнозамещенные хлорпитропарафины не обладают повышенной точкой кипения по сравнению с нехлорированными продук-. тами, в то время как обычное введение хлора в молекулу сопровождается повышением температуры кипения. [c.348]

    Парафиновые углеводороды во фракциях 60—95 и 95— 122° норийской нефти преобладают по сравнению с содержанием. этих углеводородов в соответствующих фракциях мирзаанской нефти. В исследуемых фракциях норийской нефти с повышением температуры кипения фракций повышается содержание в них циклопентановых углеводородов. [c.155]

    С повышением температуры кипения и молекулярной массы масляных фракций относительное содержание н-алканов, находящихся в данной фракции твердых углеводородах, уменьшается при возрастании содержания углеводородов изостроения и циклических структур, при этом возрастает одновременно и цикличность, то есть среднее число колец, приходящееся на одну молекулу алкилнафте — [c.252]

    С повышением температуры кипения, т. е. с возрастанием молекулярного веса и увеличением числа атомов углерода в молекуле, температуры плавления изоалканов различной структуры, как и других углеводородов, повышаются. Вследствие этого с возрастанием температуры кипения фракции увеличивается возможность существования и количество изоалканов с повышенными температурами плавления, относящихся к твердым кристаллическим углеводородам. [c.44]

    Как указывали Марковников и Оглобин [104], а также Мебери [105], содержание кислорода в нефтяных фракциях увеличивается с повышением температуры кипения. Смолистые и асфальтовые веш,ества, которые можно выделить из высококипяш их фракций и мазута, содержат до 8% (а иногда и выше) кислорода. Строение высокомолекулярных соединений, содержащих наибольшее количество кислорода, до сих пор остается неизвестным. [c.37]

    В общем случае содержание серы возрастает с повышением температуры кипения отдельных фракций, однако Сиссинг [79] указывал, что когда разгонка сопровождается разложением, средние фракции могут содержать больше серы, чем последующие, в противоположность обычному распределению серы. [c.30]

    Содержание углеводородов в нефти уменьшается с увеличением среднего молекулярного веса или с повышением температуры кипения фракций. Нефтяные газы и бензины почти нацело состоят из чистых углеводородов. Дан е в тех случаях, когда бензины получаются из нефти, содержаш ей большие количества серы и кислорода, они также на 98—99% состоят из чистых углеводородов. Наоборот, высококипяш ие остаточные масла беднее углеводородами и во многих случаях состоят преимущественно из неуглево-дородиых тшмпонентов. [c.11]

    Тсношиые данные о составе тяжелых фракций. Принято считать и экспериментально установлено, что число компонентов нефтяной фракции тем бэльше, чем выше ее температура кипения. Кроме того, как показано ниже, различия между основными классами углеводородов с повышением температуры кипения выражаются все менее резко. Поэтому тяжелые фракции обладают чрезвычайно сложным состав эм, изучение которого с целью идентификации индивидуальных компонентов является довольно безнадежным делом, имеющим малую практическую ценность. Попытки выделить индивидуальные углеводороды из фракций смазочных масел до сих пор были безуспешными, если не считать к-парафинов и немногих высококонденсированных полиароматических углеводородов число компонентов настолько велико, что для их изучения необходима очень тщательная и весьма трудоемкая работа. [c.363]

    Решение. С ростом порядкового номера благородных газов увеличиваются размеры их атомов при сохранении аналогично структуры внешнего электронншо слоя атома. Поэто.му поляризуемость атомов возрастает, вследствие чего возрастают к силы дисперсионпого взамодействия между ними отрыв атомов друг от друга, происходящий при переходе вещества из жидкого в газообразное состояние, требует все большей затраты энергии Эю и приводит к повышению температуры кипения. [c.72]

    Аналогично понижение температуры кристаллизации А/крист и повышение температуры кипения Д/кип растпора электролита находят по формулам  [c.128]


Смотреть страницы где упоминается термин Повышение температуры кипения: [c.70]    [c.119]    [c.56]    [c.151]    [c.235]    [c.200]   
Смотреть главы в:

Химия -> Повышение температуры кипения

Общая химия -> Повышение температуры кипения


Электрохимия растворов (1959) -- [ c.17 ]

Физико-химический анализ гомогенных и гетерогенных систем (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вода молярное повышение температуры кипения

Выпарка повышение температуры кипения

Гагена г повышения температуры кипения

Измерение повышения температуры кипения

Кипения температура мольное повышение

Контрольные вопросы 9.3. Повышение температуры кипения

Коэффициент молярного повышения температуры кипения

Молярное повышение температуры кипения

Молярные константы понижения температуры замерзания повышения температуры кипения

Общие уравнения для вычисления активности растворителя и.осмотического коэффициента из данных по повышению температуры кипения

Определение молекулярного веса по повышению температуры кипения раствора

Повышение температуры кипения водных растворов неорганических и некоторых органических соединений

Повышение температуры кипения при растворении нелетучего вещества

Повышение температуры кипения разбавленного раствора

Повышение температуры кипения разбавленных растворов неэлектролитов и электролитов

Повышение температуры кипения раствора хлорида натрия в воде ( 47). Осмотическое давление

Повышение температуры кипения растворителя в присутствии растворенного вещества

Повышение температуры кипения растворов

Повышение температуры кипения эбуллиоскопия

Понижение упругости паров растворов (температурная Депрессия), Повышение температуры кипения растворов вследствие гидростатического давления. Охлаждение вторичного пара в паропроводах между корпусами. Общие температурные потерн Распределение полезной разности температур по корпусам

Понижение упругости паров растворов (температурная депрессия) Повышение температуры кипения растворов вследствие гидростатического давления. Охлаждение вторичного пара в паропроводах между корпусами. Общие температурные потери Распределение полезной разности температур по корпусам

Понижение упругости паров растворов (температурная депрессия) Повышение температуры кипения растворов за счет гидростатического давления. Охлаждение вторичного пара в паропроводах между корпусами. Общие температурные потери , 61. Распределение полезной разности температур по корпусам

Равновесие жидкость — пар. Повышение температуры кипения растворов. Законы Рауля и Генри

Растворители мольное повышение температуры кипения

Растворы повышение температуры кипени

Растворы полимеров температура кипения, повышени

Температура кипения повышенная

Температура кипения, повышени

Температура повышение

Температуры кипения некоторых органических соединений при повышенном давлении

Эбулиометрия повышение температуры кипения



© 2025 chem21.info Реклама на сайте