Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные гидрофильные

Рис. 10.5. Схематическое представление коллоидной гидрофильной белковой частицы, окруженной связанной водой [4]. Рис. 10.5. <a href="/info/1012491">Схематическое представление</a> <a href="/info/9991">коллоидной гидрофильной</a> <a href="/info/1338233">белковой частицы</a>, окруженной связанной водой [4].

    Коллоидные частицы гидрофильных органических коллоидов представляют собой агрегаты длинных цепных молекул, связанных в рыхлый клубок, в котором промежутки заполнены водой. Устойчивость гидрофильных коллоидов объясняется развитой гидратной оболочкой. У полярных групп молекул, образующих коллоидные гидрофильные частицы, например у групп ОН , СОз , НСОГ и т. д., молекулы воды, представляющие собой диполи, ориентируются и притягиваются в результате электростатического взаимодействия по мере удаления от поверхности полярных молекул ориентация молекул воды ослабевает. Снижение устойчивости гидрофильных систем достигается их химической обработкой, за счет которой уменьшается количество полярных групп в молекуле. Для этой цели на станциях водоочистки применяется предварительное хлорирование воды перед введением коагулянта. [c.124]

    Значительную стойкость природным нефтяным эмульсиям придает обычно присутствующий в нефти эмульгатор, который адсорбируется на поверхности диспергированных частиц. Эмульгаторами для нефтяных эмульсий являются коллоидные растворы смолы, асфальтены, мыла нафтеновых кислот, а также тонко диспергированные глины, мелкий песок, суспензии металлов и др. Они обладают способностью прилипать к поверхности раздела двух фаз) эмульсии, образуя защитную броню глобулы. Эмульгаторы, которые способствуют образованию эмульсии масла в виде глобул в дисперсионной среде —воде (гидрофильные эмульгаторы), представляют собой коллоидные растворы веществ, активных в воде, т. е. растворяющихся или разбухающих в ней (например, щелочные мыла, белковые вещества, желатин). Вещества, растворимые в маслах (например, смолы, известковые мыла, окисленные нефтепродукты), носят названия гидрофобных, или олеофильных эмульгаторов. В этой эмульсии вода содержится в виде глобул, взвешенных в дисперсионной среде — нефти. [c.11]

    Тепловое разрушение граничных слоев воды проявляется и в снижении устойчивости гидрофильных коллоидных систем—таких, как золи кварца и алмаза [24, 251. Стабилизация коллоидных систем за счет адсорбции неионогенных ПАВ свя- [c.10]

    Таким образом, по природе связывания воды для торфа характерны все механизмы взаимодействия, свойственные для гидрофильных капиллярно-пористых, коллоидных высокомолекулярных природных сорбентов органического происхождения. [c.69]


    Б. В. Дерягиным была выдвинута концепция, согласно которой между коллоидными частицами или поверхностями при их сближении и перекрытии граничных слоев жидкой среды возникают силы взаимодействия, получившие наименование структурных сил [415, 421, 519]. В случае гидрофильных поверхностей появляется структурное отталкивание (структурная составляющая расклинивающего давления). [c.189]

    Расчеты, проведенные для гидрофильных систем (кварца, стекла, слюды), показали, что структурное отталкивание вносит существенный вклад в энергию взаимодействия поверхностей или коллоидных частиц [47]. [c.189]

    Коагуляция загрязнений, находящихся в масле в коллоидном или мелкодисперсном состоянии, может быть вызвана определенными веществами — коагулянтами, а также может происходить под влиянием механических, тепловых и световых воздействий, электрического поля и т. п. В качестве коагулянтов используют неорганические и органические электролиты, поверхностноактивные вещества, не являющиеся электролитами, коллоидные растворы поверхностно-активных веществ и гидрофильные высокомолекулярные соединения. [c.118]

    Деэмульгатор, адсорбируясь на межфазной поверхности капли воды, способствует диспергированию, пептизации или коллоидному растворению механически прочного гелеобразного слоя. Вытеснив с поверхностного слоя капли природные эмульгирующие вещества, деэмульгатор образует гидрофильный адсорбционный слой, не обладающий структурно-механической прочностью. [c.83]

    Но известны присадки иного типа — поверхностно-активные соединения, предотвращающие обледенение карбюраторов, которые образуют защитную оболочку на частицах льда, что препятствует их объединению друг с другом или оседанию на стенках карбюратора [8, 9]. Предполагают, что действие этих присадок основа[но на образовании мицелл, имеющих в наружной части углеводородные радикалы молекул, а во внутренней части — гидрофильные группы молекулы воды располагаются внутри мицеллы, что предотвращает их агрегацию при понижении температуры. Иными словами, присадки этого типа могут действовать как поверхностно-активные коллоидные растворители, обеспечивающие солюбилизацию воды в углеводородной среде [10]. [c.206]

    Е н а л ь е в В. Д. и др., Коллоидн. ж., 31, № 1, 53 (1969). Влияние добавок регулятора гидрофильно-гидрофобного баланса на свойства суспензий бентонита и эмульсий, стабилизированных ими. [c.196]

    Введение еще более гидрофильной сульфогруппы усиливает коллоидную растворимость в воде не только щелочных алкил-сульфонатов, но и самих кислот, на чем в значительной степени [c.36]

    Размер и свойства поверхности аморфного осадка зависят от многих причин. Характер осадка в значительной степени обусловлен его специфическими, индивидуальными свойствами. Прежде всего это сказывается на степени связи частицы со средой. В коллоидной химии различают два типа коллоидов гидрофильные н гидрофобные . Гидрофобные осадки сравнительно слабо адсорбируют молекулы воды и выпадают в виде более плотных масс, порошков и хлопьев. Гидрофобные осадки занимают меньший объем и сравнительно хорошо отделяются фильтрованием. Примером этой группы осадков может быть сернистый мышьяк и др. сульфиды металлов . Для этой группы осадков электролиты сравнительно легко и быстро вызывают количественную коагуляцию. [c.60]

    Аморфные осадки, особенно гидрофильные, лучше всего осаждать из. возможно более концентрированных растворов, так как при этом значительно уменьшаются общая поверхность и объем осадка. Один из наиболее гидрофильных осадков — кремневую кислоту, вообще не удается выделить иначе, как при удалении всего растворителя. Только тогда происходит полная коагуляция ее коллоидного раствора. Для этого раствор силиката обрабатывают соляной кислотой и выпаривают досуха. [c.78]

    Кремневую кислоту приходится выделять из ее коллоидного раствора при анализе различных минералов, руд, технических силикатов и др. материалов. Кремневая кислота является гидрофильным коллоидом, и полное выделение представляет большие трудности. После однократного выпаривания с соляной кислотой обычно кремневая кислота полностью в гель не переходит. Коллоидные частицы кремневой кислоты в солянокислом растворе имеют отрицательный заряд коллоидный раствор желатины в тех же условиях имеет положительный заряд поэтому прибавление желатины приводит к коагуляции кремневой кислоты. [c.83]

    Однако коллоидная химия изучает и другие высокодисперсные системы — растворы высокомолекулярных соединений белков, целлюлозы, каучука, которые на заре развития коллоидной химии получили название лиофильных (гидрофильных) золей и были причислены к типичным коллоидам, так как обладают общими свойствами, характерными для коллоидных систем. К этим свойствам относятся  [c.326]

    Аналогично этому гидратация гидрофильных коллоидов обусловливается электростатическими силами, т. е. за счет электрических зарядов, возникающих вследствие ионизации. На поверхности коллоидных частиц высокомолекулярных веществ образуются оболочки, состоящие из диполей воды, ориентированных в зависимости от знака заряда ВМС своим положительным или отрицательным концом. [c.333]


    Таким образом, в гидрофильных коллоидах, т. е. в растворах высокомолекулярных соединений, какая-то часть воды оказывается прочно связанной с коллоидными частицами и вместе с ними участвует в броуновском движении, другая же часть играет роль среды, в которой находятся коллоидные мицеллы. [c.333]

    Причиной защитного действия ВМВ является их адсорбция на поверхности коллоидных частиц, приводящая к созданию гидрофильной оболочки. В итоге гидрофобный золь приобретает свойства и устойчивость гидрофильного вещества. [c.203]

    Коллоидные растворы подразделяют на гидрофобные (в неводных растворах лиофобные) и гидрофильные (в неводных растворах лиофильные). Гидрофобные частицы имеют малое сродство к воде, вязкость их невелика. К их числу относятся коллоиды иодида серебра, сульфида мышьяка (III) и многие другие. Гидрофильные коллоиды в значительной степени гидратированы, а после высушивания их твердые остатки гигроскопичны. Такими свойствами обладают, например, кремниевая кислота и некоторые другие сильно гидратированные оксиды. Устойчивость гидрофильных коллоидов выше, чем гидрофобных. Важным свойством гидрофильных коллоидов является их защитное действие на гидрофобные частицы. Введение лиофиль-ных веществ, таких, например, как желатина, повышает устойчивость гидрофобных коллоидов, имеющих такой же заряд. [c.99]

    При введении в коллоидный раствор электролитов происходит сжатие диффузного слоя и даже его разрушение, в результате чего силы отталкивания между частицами уменьшаются, частицы слипаются и выпадают в осадок — происходит коагуляция коллоидного раствора. Чем выше заряд противоиона во введенном электролите, тем при меньшей концентрации наблюдается эффект коагуляции (правило Шульце — Гарди). Гидрофильные коллоиды коагулируют только при значительных концентрациях электролита. Коагуляции коллоидов способствует также повышение температуры раствора. Таким образом, для разрушения коллоидного раствора и его коагуляции необходимо нагревание и введение электролита. [c.99]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Размер углеводородного радикала является наиболее существенным фактором, от которого зависит поверхностная активность и (в случае коллоидных ПАВ) величина ККМ. Природа гидрофильной группы и противоионов слабо влияют на эти параметры. [c.131]

    Полагают, что возможно использовать ионизирующую энерг по для глубокого обезвоживания гидрофильных осадков, так как они могут разрушать или трансформировать химические соединения, адсорбированные на поверхности частиц, способствующие их существованию в коллоидно-дисперсном состоянии. [c.237]

    Огромное значение имеет коллоидная химия в земледелии. Почва является сложнейшей коллоидной системой. Размер и форма частиц почвы, наряду с их природой, определяют водопроницаемость и поглотительную способность почвы, которые в свою очередь влияют на урожайность. Пески, обладающие невысокой дисперсностью, легко пропускают воду, высокодисперсные же глины, наоборот, хорошо удерживают влагу. Присутствие щелочей повышает дисперсность и гидрофильность почв. В противоположность этому соли кальция коагулируют почву и понижают ее гидрофильность. На этом основано известкование почвы, применяемое для того, чтобы понизить способность почвы удерживать влагу. В последнее время широко применяются так называемые структурирующие агенты на основе некоторых полимеров, внесение которых в почву устраняет эрозию и придает почве желательные свойства. [c.30]

    Нам представляется, что образование полых частиц является следствием наличия градиентов температуры, влажности и давления внутри частицы коллоидных растворов, образующих эластичную и плохо паропроницаемую пленку в определенный момент сушки. Исследование сушки сульфатных щелоков и костного клея указывает на механизм образования полых частиц, когда с увеличением диаметра капли и начальной температуры газов плотность отдельных частиц вследствие их раздутия уменьшается. Для крупных частиц возникали большие градиенты влажности, температуры и избыточного давления. Полыми получаются и частицы в виде нитей коллоидных гидрофильных растворов. Кроме того, мы наблюдаем, что при конечной влажности 190 [c.190]

    Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов, которые притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды — процесс, называемый коацервацией (от лат. соасегуиз — сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться веществами с окружающей средой и избирательно накапливать различные [c.276]

    Главной причиной существования слоя осмотически связанной воды в гидратной оболочке гидрофильных коллоидных частиц слоистых силикатов является гидратация отдиссоциирован- [c.43]

    Лиофильность и лиофобность коллоидов. Лиофиль-ностью называется способность частиц коллоида очень сильно и в большом количестве связывать молекулы дисперсионной среды, образуя сольватные оболочки. В противоположном случае, т. е. когда частицы не могут так сильно взаимодействовать с этими молекулами, говорят о лиофобиости коллоида. В частном случае водных коллоидных растворов в том же смысле пользуются терминами гидрофильность и гидрофобность . Разные коллоидные системы могут обладать различной степенью лиофильности. [c.507]

    По всей вероятности, это объясняется двумя причинами сдвигом в благоприятную сторону отношения подвижностей фаз из-за снижения проницаемости в обводненной зоне н образования коллоидного раствора (загущенной, воды) и изменением структуры пористой среды, в частности, сокращением открытой пористости. Заметим, что из гидрофильной пористой среды при уменьшении порпстостп вытесняется преимущественно менее смачивающая фаза (нефть), [c.34]

    Большинство коллоидных систем, представляющих практический интерес, имеют гидрофильную структуру. "Это затрудняет измерения диэлектрической проницаемости и электропроводности и снижает пх точность. За последние двадцать лет измерительная техника значительно улучшилась. Поэтому пекотс рые ранее изученные системы нужно исследовать еще с помощью имеющейся болое совершенной техники. [c.412]

    Тип и свойства дисперсных систем определяются их взаимодействием с дисперсионной средой. Существуют обратимые и необратимые дисперсные системы. Обратимые системы — это системы, высушенная дисперсная фаза которых самопроизвольно диспергируется (или растворяется) и снова образует тонкодисперсную (коллоидную) систему, хорошо взаимодействуя с дисперсионной средой. Такие системы относятся к лиофильиьш (в случае водной дисперсионной среды — к гидрофильным). Лиофильными системами являются растворы ВМС, суспензии натриевых или литиевых бентонитовых глин, мыла и др. [c.66]

    Объяснить ЭЮ можно, исходя из данных П. А. Ребиндера, показавшего, что все твердые тела обладают дефектами структуры — слабыми местами, распределенными таким образом, что участки твердого тела между ними имеют в среднем коллоидные размеры (порядка 10 см), т. е. один дефект встречается в среднем через 100 правильных межатомных (межмолекулярных) расстояний. Такие дефекты, очевидно, имеются и в сланцевых глинистых породах. С повышением гидростатического давления возрастает перепад давленш в системе скважина — пласт и, следовательно, глубина проникновения фильтрата промывочной жидкости. Проникающий по этим дефектным местам или микротрещинам фильтрат промывочной жидкости в зависимости от химического состава будет вызывать тот или иной эффект понижения твердости глинистых пород со всеми вытекающими последствиями для устойчивости стенок скважин. Проникновение фильтрата промывочных жидкостей в глинистые отложения за счет высокой гидрофильности глинистых минерале3, составляющих глинистые породы, имеет место и при отсутствии перепада давлений в системе скважина — пласт, но при наличии перепада давлений в системе скважина — сланцевые глинистые породы этот процесс интенсифицируется. Для полного увлажнения сланцевых глинистых пород, обладающих малой удельной поверхностью, требуется значительно меньше водной среды, чем для высококоллоидальных глин с их огромной удельной поверхностью. Поэтому требования к величине водоотдачи при разбуривании сланцевых глинистых пород должны быть значительно выше. Величины водоотдачи и перепада давлений хотя и играют значительную роль, но не являются определяющими в сохранении устойчивости стенок скважин, сложенных глинистыми породами. Устойчивость стенок скважин и основном определяется физико-химическими процессами, протекающими в глинистых породах при их контакте с фильтратами промывочных жидкостей на водной основе. Влияние этих процессов на изменение свойств малоувлажненных глинистых пород в значительной мере может быть оценено величинамп показателей набухания и предельного напряжения сдвига. [c.105]

    Кроме рассмотренной классификации, все ПАВ могут быть классифицированы на основании двух важнейших признаков по химическому признаку и по коллоидно-структурному. По химическому признаку ПАВ делятся на анионактивные, катионактив-ные, неионогенные. По коллоидно-структурному признаку их делят на вещества, находящиеся в истинном растворе, а поэтому не обладающие моющим действием, и на моющие вещества, образующие мицеллярные или даже гелеобразные структуры. Моющими веществами, или детергентами, бывают вещества любого из трех классов, т. е. анионактивные, катионак-тивные и неиоиогенные. При этом обязательным условием должны быть высокая полярность (гидрофильность) полярной группы и одновременно достаточная длина углеводородной цепи. Имен- [c.35]

    Типичные гидрофобные золи легко коагулируют при ирибавле-НИИ к ним малых количеств электролитов (миллиграммы на литр). Раствор1л высокомолекулярных соединений, наоборот, обладают большой устойчивостью против коагулирующего действия электролитов. Многочисленными исследованиями было установлено, что растворы ВМС, будучи прибавлены к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Так, если к золю золота (гидрофобный коллоид) прибавить небольшое количество желатина, гидрозоль золота становится более устойчивым. При прибавлении электролитов даже в количествах, значительно превосходящих порог коагуляции, а также при длительном стоянии этот золь не испытывает практически никаких изменений. Если этот золь вы парит .. то при смешении сухого препарата с водой вновь образуется коллоидный раствор. Таким образом, типичный гидрофобный золь золота при прибавлении к нему желатина как бы приобрел свойства гидрофильного золя и стал обратимым. Подобное явление получило название защитного действия или просто защиты, а сами вещества, повышающие устойчивость гидрофобных золей, получили название защитных. [c.385]

    Механизм защитного действия достаточно хороига объясняется теорией Зигмонди, в основе которой лежит представление об адсорбционном взаимодействии между частицами защищаемого и защищающего золей. Более крупная частица гидрофобного золя адсорбирует на своей поверхности более мелкие макромолекулы ВМС с их сольватными (гидратными) оболочками, и в результате этого она приобретает лиофильные (гидрофильные) свойства. В данном случае коллоидные мицеллы необратимого гидрофобного золя предохраняются от непосредственного соприкосновения друг с другом, а следовательно, и от агрегации как в случае действия на такой золь электролита-коагулятора, так и в случае концентрирования золя. На рис. 121, а показана схема подобного защитного действия. Таким образом, высокомолекулярные соединения выступают в роли стабилизатора лиофобных (гидрофобных) золей, То, что именно на адсорбции основано защитное действие, подтверждается не только избирательным характером взаимодействия между макромолекулами ВМС и мицеллами, но и тем, что степень защитного действия увеличивается с концентрацией защищающего раствора ВМС только до полного адсорбционного насыщения поверхности мицелл защищаемого золя. [c.387]

    Однако в случае ПАВ с диссоциирующими полярными группами (соли жирных кислот, аминов, алкилсульфаты и другие коллоидные ПАВ) прямая Ув = 1(п) имеет заметно меньший наклон (рис. 3, кривая 2), чему соответствует и меньшее расчетное значение Д . Это явление объясняется тем [2, с. 94], что ионизированные полярные группы обладают большей гидрофильностью, чем неионизированные (за счет ион-дипольного взаимодействия с молекулами воды). Сильное взаимодействие заряженных полярных групп с водой приводит к частичному втягиванию углеводородного ра- [c.28]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Фрейндлих высказал мнение, что обратимость и необратимость коллоидной системы определяется взаимодействием дисперсной фазы с дисперсионной средой. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. Исходя из этого, такие коллоидные системы Фрейндлих предложил также называть лиофиль-ными коллоидными системами (от греч. слова лиос — жидкость, фило — люблю). Дисперсная фаза необратимых коллоидов неспособна взаимодействовать с дисперсионной средой, а следовательно, и растворяться в ней. Поэтому эти системы Фрейндлих назвал лиофобными (от греч. слова фобе — ненавижу). В том случае, когда дисперсионной средой системы является вода, эти два класса можно называть соответственно гидрофильными и гидрофобными системами (от греч. слова гидра —вода). [c.26]

    Примером пептизации с помощью поверхностно-активных веществ может служить пептизация высокодисперсного порошка кровяного, угля пикриновой кислотой и мылами. Окись железа также может быть пептизирована мылами, а окись алюминия — ализарином. Высокодисперсный порошок гидрофильного каолина пептизируется гуминовыми кислотами. Хорошим пептйзирующим действием часто обладают высокомолекулярные вещества, макромолекулы которых способны адсорбироваться на частицах и придавать им заряд или сольватную оболочку. Согласно новым воззрениям пептизация может обусловливаться и взаимным отталкиванием совершающих тепловое движение гибких цепных молекул, только частично адсорбировавшихся на поверхности коллоидной частицы. Более подробно об этих взглядах сказано в гл. IX. [c.255]

    Было изучено влияние на устойчивость и коагуляцию золей гидрата окнси железа и сульфида мышьяка адсорбции неионогенных поверхностно-активных веществ, дифильные молекулы которых состоят из неполярного углеводородного радикала и полярной полиоксиэгиленовой цепи. В зависимости от интенсивности взаимоде ствия поверхности коллоидных частиц с дисперсионной средой влияние неиоюгенных поверхностно-активных веществ на коллоидные системы оказалось различным даже в качественном отношении. Поверхностно-активные соединения при малых их концентрациях в системе не повышали гидрофильности частиц гихрата окиси железа и уменьшали устойчивость гидрозоля к действию электролитов. Это, очевидно, связано с промежуточным характером золя Ре(ОН)з, имеющего достаточно гидрофильные частицы. При больших концентрациях иеионогенные поверхностно-активные вещества вызывали коагуляцию золя Ре(ОН)з. [c.298]

    Для того чтобы ПАВ было способно образовывать мицеллы, оно должно удовлетворять двум требованиям — с одной стороны, (/иметь достаточно большой углеводородный радикал, снижающий / растворимость в воде, а, с другой - /обладать достаточно сильной полярной группой, способствующей его растворимости. Этому требованию удовлетворяют не все поверхностно-активные вещества. Например, для гомологического ряда алифатических спиртов ми-целлообразование вовсе не характерно. При этом для соединений с числом углеродных атомов меньше 7 мицеллообразованию мешает малая длина углеводородного радикала, а для более высоких гомологов — сравнительно низкая гидрофильность полярной группы. Известно также, что для многих коллоидных ПАВ, например, для оксиэтилированных спиртов, независимо от числа оксиэтиле-новых групп, т. е. от полярности гидрофильной части молекулы, мицеллообразование становится возможным лишь при Длине углеводородного радикала, превышающей 7—8 углеродных атомов. [c.400]

    Важной характеристикой молекул коллоидных ПАВ, имеющей решающее значение для их поверхностных и объемных свойств, а значит, и для их применения, является соотнощение двух противоположных групп молекулы — гидрофильной и гидрофобной (ли-пофильной), так называемый гидоосЬильно-липофильный баланс (ГЛБ). В настоящее время не существует строгой теории, позволяющей определить значение ГЛБ, исходя из строения молекулы или из физико-химических свойств вещества. В качестве первого приближения пользуются предложенной Гриффином и развитой Дэвисом полуэмпирической системой ГЛБ, позволяющей с энергетических позиций количественно оценить и выразить в виде условных групповЁпг чисел степень дааимодействия с водой отдельных групп, из которых состоит молекула ПАБ. Групповые числа гидрофильных групп положительны, а липофильных — отрицательны. [c.404]


Смотреть страницы где упоминается термин Коллоидные гидрофильные: [c.97]    [c.289]    [c.72]    [c.91]    [c.8]    [c.298]    [c.299]   
Аналитическая химия Часть 1 (1989) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные системы гидрофильные

Коллоидные частицы гидрофильные



© 2025 chem21.info Реклама на сайте