Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий с ванадием и цирконием

    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]


    Кислород о. . Водород Н. . Кремний 81. . Алюминий А1. Натрий N3. . Железо Ре. . Кальций Са. . Магний Mg. . Калий К. . . Титан Т1. . . Углерод С. . Фосфор Р. . . Азот N.... Марганец Мп. Сера 3. ... Фтор Р. . . . Хлор С1. . . . Литий 1л. . . Барий Ва. . . Стронций 8г. Хром Сг. .. Ванадий V. . Рубидий РьЬ. Цирконий г. Никель N1. . Медь Си. ... Цинк 2п. . . Кобальт Со. . Бериллий Ве. Олово 8п. . .  [c.425]

    Тугоплавкие вольфрам, молибден, тантал, ванадий, ниобий,цирконий " Легкие литий, бериллий, рубидий, цезий [c.5]

    Платина Плутоний Радий Рубидий Рений Роди й Радон Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Ксенон Иттрий Иттербий Цинк Цирконий [c.187]

    Материал в пособии изложен последовательно согласно расположению элементов в группах периодической системы Д. И. Менделеева. Большой объем материала вызвал необходимость расчленить книгу на три части, которые выходят в свет одновременно. В I части излагается химия и технология лития, рубидия и цезия, бериллия, галлия, индия и таллия, во П части — скандия, иттрия, лантана и лантаноидов, германия, титана, циркония и гафния, в П1 части — ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. [c.3]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    В первой книге описываются макро-, микро-, полумикрометоды, а также хроматографические, люминесцентный и некоторые другие методы анализа. Наряду с описанием реакций катионов и анионов, которые обычно рассматриваются в учебниках по качественному анализу, приводится описание реакций и методов разделения наиболее важных редких и рассеянных элементов (лития, рубидия, цезия, бериллия, титана, циркония, тория, урана, германия, ванадия, вольфрама, молибдена и др.), которые изучаются студентами только некоторых специальностей. Однако материал учебника расположен таким образом, что при необходимости описание упомянутых элементов может быть выпущено без особого ущерба для изложения основного курса. [c.11]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]


    Литий, рубидий, цезий, ванадий, ниобий, цирконий, торий, уран Титан, цирконий, тантал, гафний Тантал, цирконий Титан, цирконий, торий [c.420]

    Таким образом, в книге рассматриваются следующие редкие металлы литий, рубидий, цезий, бериллий, скандий, иттрий, лантан и другие элементы группы редких земель, торий, уран, галлий, индий, таллий, германий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам и рений — всего 44 металла, а также селен и теллур. [c.16]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    В книге изложены основы технологии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. В отношении каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений элементов из концентратов, отходов и полупродуктов производства, получение особо чистых как соединений, так и металлов. [c.4]

    В книге изложены основы химии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. Наиболее подробно описаны синтез и свойства соединений элементов с кислородом и галогенами, а также солей, имеющих большое значение в технологии. [c.4]

    Марганец Молибден Натрий Ниобий Неодим Никель Осмий Фосфор (тверд.) Свинец Палладий Полоний Празеодим Платина Плутоний(жидк.) Радий Рубидий Рений Родий Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово (жидкое) Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Иттрий Иттербий Цинк Цирконий [c.25]

    В книгу включены методы определения лития, рубидия, цезия, бериллия, скандия, лантанидов, иттрия, ванадия, ниобия, тантала, молибдена, титана, циркония, гафния, урана, тория, вольфрама, рения, технеция, галлия, индия, таллия, германия, висмута, селена и теллура. Приведены важнейшие органические реагенты для редких элементов, маскирующие вещества, произведения растворимости некоторых малорастворимых соединений. Указаны методы выделения редких элементов экстракцией. [c.2]

    Теоретическая часть руководства и аналитические характеристики редких элементов написаны А. И. Бусевым. Методы определения ванадия, ниобия, тантала, вольфрама, рения, галлия, индия, таллия, германия, селена и теллура составлены В. Г. Тип-цовой методы определения лития, рубидия, цезия, бериллия, скандия, лантана, церия и лантанидов, тория, урана, титана, циркония, молибдена и висмута составлены В. М. Ивановым. Общее руководство работой над книгой осуществлялось А. И. Бусевым. [c.10]

    Титан, цирконий и ванадий находятся в малых количествах в разнообразных породах. Литий, цезий и рубидий в первичном виде находятся в слюдах и полевых шпатах и переходят в раствор при выветривании материнских пород. [c.20]

    Литий, рубидий, калий, цезий, радий, барий, стронций, кальций, натрий, лантан, магний, плутоний, торий, нептуний, бериллий, уран, гафний, алюминий, титан, цирконий, ванадий, марганец, ниобий, хром, цинк, галлий, железо [c.40]

    Раздели справочника, посвященные свойствам гафния, рения, лития, бериллия, рубидия, цезия, бора, ванадия, циркония, молибдена, вольфрама, радия, тория, урана и редкоземельных элементов, составлены М. А. Филяндом. [c.6]

    Кислород О. . Водород Н. . Кремний 81. . Алюминий А]. Натрий Ка. . НГелезо Ре. . Кальций Са. . Мяпшй М . . Калий К. . . Титан Т1. . . Уг. К род С. . Ф( фор Р. . . Азот N.... Млрганец Мп. Сера 8. ... Фтор К. . . . Хлор С1. . . . Литий Ы. . . Барий Ва. . . Стронций 8г. Хром Сг. . . Ванадий V, . Рубидий ЕЬ. Цирконий гг. Нинель N1. . Медь ("и. ... Цинк п. . . Коба. гьт Со. . Бериллий Ве. Олово 8п. . .  [c.425]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостояте.иьно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, никелю, редкоземельным элементам и иттрию, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, плутонию, нептунию, трансплутониевым элементам, кремнию, платиновым металлам, литию, германию, рению, магнию, кадмию, радию, золоту, фосфору, марганцу, ртути, кальцию, вольфраму, цинку, рубидию и цезию, олову, серебру, сере. Готовятся к печати монографии по аналитической химии бария, титана, азота, меди, углерода, иода, ванадия. [c.4]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Редкие металлы — все металлы, не включенные в предыдущие группы. К ним относятся тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт легкие металлы — бериллий, литий, рубидий и др. рассеянные металлы — германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются более металлоидами, чем металлами редкоземельные металлы — лантан, иттрий, гафний, церий, скандий и др. подгруппа радиактивных металлов— торий, радий, актиний, протактиний, полоний, уран и заурано-вые элементы. Из группы редких металлов часто выделяют [c.382]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт б) легкие бериллий, литий, рубидий и др. в) рассеянные германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются скорее металлоидами, чем металлами г) редкоземельные лантан, иттрий, гафний, церий, скандий и др. д) радиоактивные торий, радий, актиний, протактиний, полоний, уран и заурановые элементы. Из группы редких металлов часто выделяют в качестве отдельной группы так называемые малые мегаллы сурьму, ртуть, висмут. [c.431]

    К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы хром, ванадий, молибден, ниобий, тантал, р-кобальт а-железо (ниже 900° и выше 1400°С, а в области 910°—1400° С железо имеет ГЦК-струк-туру), титан, цирконий, гафнпй, щелочные элементы — литий, натрий, калий, рубидий, цезий, щелочноземельные — кальций, стронций, барий, актиниды — уран, нептуний, плутоний. Из интерметаллических соединений в [c.160]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]

    Тритий (СВ( ГН)ДИЫЙ Бериллий Углерод Фтор Натрий Фосфор Сера Хлор Аргон Калий Кальций Скандий Скандий Ванадий Хром Марганец Железо Железо Кобальт Никель Медь Цинк Галий Германий Мышьяк Рубидий Стронций Стронций-иттрий Иттрий Цирконий-ниобий Ниобий Молибден Технеций Рутений-родий Рутений. Рутений-родий [c.441]

    Медь, цинк, кадмий, кобальт, никель, лантан, уран, марганец, (И) также образуют с сульфарсазеном окрашенные соединения. Не образуют последних и не мешают определению свинца литий, калий, натрий, рубидий, цезий, магний, барий, стронций, кальций мышьяк, висмут, вольфрам, толлий (HI), германий, галлий в количествах до 50у. Железо (III), алюминий, титан,бериллий, олово (IV), теллур, иттрий, скандий, цирконий, ванадий (V), молибден (VI), торий в количествах 50у мешают определению свинца. [c.210]

    Восстановление окислов металлов кремнием, Литий, рубидий, цезий, ванадий, нио-ферросилицием н алюминием (металлотер- бий, цирконий, торий, уран [c.188]

    Аналогичная картина наблюдается в изменении кристаллических структур элементов пятого периода. Рубидий обладает ОЦК структурой. Низкотемпературная модификация стронция изоморфна а-кальцию. Элемент Illa подгруппы — индий обладает гранецентрированной тетрагональной структурой, близкой к ГЦК решетке алюминия. Гранецентри-рованная тетрагональная структура индия является переходом к объемноцентрированной тетрагональной структуре р-олова. В ряду сурьма— йод, структуры которых возникают путем образования направленных двухэлектронных связей, происходит окончательная потеря металлических свойств. Структуры 40-нереходных металлов от иттрия до кадмия сходны со структурами Зй-переходных металлов. Иттрий, цирконий, ниобий и молибден изоморфны, включая полиморфные модификации, соответственно скандию, титану, ванадию и хрому, и только гексагональные плотные упаковки технеция и рутения отличаются от структур марганца и железа. Родий, палладий и серебро имеют такие же гранецентрированные решетки, как р-кобальт, никель, медь, а кадмий — такую же решетку, как цинк. [c.193]


Смотреть страницы где упоминается термин Рубидий с ванадием и цирконием: [c.533]    [c.125]    [c.258]    [c.212]    [c.6]    [c.212]    [c.237]    [c.241]    [c.242]    [c.116]   
Успехи химии фтора (1964) -- [ c.98 , c.99 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.98 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте