Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий и мышьяк, разделение

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]


    В работах [973—975] указывается, что наиболее подходящей жидкой фазой для разделения смесей трихлорида мышьяка с хлоридами германия, кремния, олова и фосфора является силиконовое масло В С - 5 5 О, нанесенное на целит-545. Схема [c.138]

    Способ, который применяется для растворения сульфидов группы мышьяка, имеет весьма существенное значение, если присутствуют германий, мышьяк (П1), олово (IV), сурьма (III) или селен, потому что при выпаривании солянокислых растворов могут произойти значительные потери этих элементов. В сомнительных случаях сульфиды лучше растворить в горячем разбавленном растворе едкого натра с добавлением хлора, перекиси водорода или перкарбоната калия, затем раствор охладить и подкислить кислотой, требующейся при предполагаемых отделениях. Если после предшествующих разделений ртуть осталась вместе с группой мышьяка, ее обычно выделяют до подкисления или окисления щелочного раствора, например обработкой нитратом аммония, как описано в гл. Ртуть (стр. 245). [c.95]

    Для большей наглядности оценим коэффициент разделения в системе бензол — тиофен, которая, как уже упоминалось, используется в качестве модельной, и в системе тетрахлорид германия— трихлорид мышьяка, представляющей собой типичную систему в практике глубокой очистки веществ. Необходимые для расчета данные представлены в табл. И.1. Исходя из этих данных, с помощью соотношений (И.17) и (П.18) можно найти параметры межмолекулярного взаимодействия для каждого [c.39]

    Фтористый водород в принципе является универсальным фторирующим агентом, поскольку очень многие элементы реагируют с ним. Однако примененпе фтористого водорода в лабораторных условиях для окислительного фторирования несколько ограниченно. Большинство реакций гидрофторирования, в результате которых образуются летучие фториды, дают небольшой выход (например, при гидрофторировании фосфора и мышьяка) или же затруднено дальнейшее разделение продуктов реакций. Характерное исключение представляет собой получение пентафторида ниобия [151], пентафторида тантала [151] и дифторида германия [152, 153]. [c.335]

    В современной технике исторически сложилось разделение металлургии на черную и цветную. Черная охватывает производство и переработку сплавов на основе железа чугунов, сталей, ферросплавов (сплавы железа с другими элементами, необходимыми для черной металлургии и легирования сталей), составляющих 95% всей мировой металлопродукции. Цветная металлургия включает производство всех остальных металлов, а также близко примыкающих к ним по используемым технологиям и источникам сырья твердых неметаллов кремний, германий, селен, теллур, мышьяк и др. [c.32]


    Бензол и четы ре XX лор истый углерод из солянокислых растворов практически пе экстрагируют мышьяк(У) [661, 708], что используется для отделения мышьяка(1П) от мышь-яка(У), а также для разделения мышьяка(У) и германия (82, 223, 708]. [c.124]

    В основе хроматографического разделения мышьяка и германия лежит тот факт, что германий значительно легче, чем трех- [c.64]

    Авторы поставили перед собой задачу разработать метод выделения Аз , свободного от носителя, из облученного нейтронами германия, целиком основанный на экстракции органическими растворителями и свободный от недостатков, присущих другим методам. При этом имелось в виду получение препаратов с высокой активностью. Для того чтобы подобрать оптимальные условия разделения, измерялись величины коэффициентов распределения германия и мышьяка между растворами соляной кислоты различной концентрации и органическими растворителями (в большинстве опытов применялся четыреххлористый углерод). Было исследовано влияние присутствия йодида и различных восстановителей и окислителей на коэффициенты распределения этих элементов. Пришлось также разрабатывать методику приготовления образцов для измерения активности, позволяющую избежать потерь вследствие улетучивания соединений мышьяка и германия. Несколько вариантов метода разделения было проверено на облученных нейтронами мишенях из металлического германия. [c.65]

    Опубликованы данные о влиянии различных факторов на экстракцию гетерополикислот, а также варианты методик для экстракционного разделения и фотометрического определения фосфора, мышьяка, кремния, германия и ванадия в форме соответству-юш,их гетерополикислот в различных материалах. [c.239]

    При анализе реакционных веществ целесообразно после хроматографической колонки и перед детектором расположить реактор с целью проведения конверсии реакционноспособных соединений в стабильные простые продукты. Обычно возможно также использовать реакции, в которых на одну молекулу анализируемого соединения образуется несколько молекул стабильного продукта, которые с хорошей чувствительностью регистрируются детектором. Проведение таких химических превращений дает возможность использовать для детектирования стабильные соединения, не загрязняющие детектор, повысить чувствительность детектирования, используя для этой цели несколько последовательных превращений, упростить калибровку прибора и оценку количественных результатов. Например, анализируя летучие гидриды IV—VI групп периодической системы (гидриды кремния, германия, серы, фосфора, мышьяка и т. д.), разделенные соединения в потоке инертного газа-носителя направляют в трубчатый реактор (ЮХ1.5 см), нагретый до 1000 °С. В реакторе гидриды разлагаются до водорода, что позволяет повысить чувствительность и упростить калибровку, проведя ее по водороду. [c.237]

    Разделение посредством образования комплексных анионов с оксалат-или тартрат-ионами. Единственное разделение, основанное на образовании комплексных анионов с оксалат-ионами, — это отделение олова (IV), остающегося в растворе, от выпадающих в осадок сульфидов мышьяка, сурьмы и др. Возможно, что германий при этом осаждении ведет себя подобно олову. Разделения, основанные на образовании комплексных анионов с тартрат-ионами, распадаются на две группы в зависимости от того, в какой среде проводится осаждение, в кислом или в щелочном растворе. В первом случае винная кислота прибавляется для предупреждения частичного осаждения вольфрама и ванадия во втором случае ею пользуются иногда для той же цели, подкисляя потом щелочной раствор, но главное ее назначение здесь — предупредить осаждение элементов, способных выделяться в щелочной среде в виде гидроокисей. [c.89]

    Этому разделению мешают некоторые элементы группы мышьяка германий количественно перегоняется вместе с мышьяком молибден, рений, селен и, возможно, теллур частично переходят в дистиллят с сурьмой, частично — с оловом. Если присутствует ртуть, она перегоняется с сурьмой и оловом н, возможно, также с мышьяком [c.98]

    Для улучшения степени разделения можно использовать водо-родные соединения некоторых элементов. Применение газообразного водорода, получаемого в растворе хлористоводородной кислоты с помощью металлического цинка, дает возможность, например, количественно отгонять из раствора сурьму и германий в виде гидридов и хлоридов [48]. Для спектрального определения можно воспользоваться хорошо известной реакцией образования газообразного гидрида мышьяка. Способы обогащения с помощью дистилляции и превращения в газ имеют особое значение для спектрального анализа в случае, когда из раствора можно выделить основной компонент и тем самым увеличить относительную концентрацию следов примесей в пробе. [c.72]


    Реакции эти проходят при 120—138° С при этом элементарная сера растворяется в хлористой сере в любых количествах. Это обстоятельство облегчает протекание гетерогенной реакции хлорирования сульфидов. Большая часть получаемых хлоридов металлов нерастворима в хлористой сере и может быть отделена от жидкости. Некоторые хлориды (мышьяка, сурьмы, олова, германия, селена, теллура и др.) хорошо растворяются в хлористой и элементарной сере. Это качество может быть использовано для отделения хлоридов по мере их накопления дробной дистилляцией хлористой серы. Хлорирование сульфидных руд в жидкой хлористой сере, по данным работы [93], позволяет в процессе хлорирования осуществлять групповое разделение компонентов и представляет собой непрерывный процесс с раздельной выдачей хлоридов металлов и элементарной серы. [c.42]

    Конденсат расслаивается на два слоя. Нижний слой состоит из тетрахлорида германия с 20% трихлорида мышьяка, верхний — из соляной кислоты с треххлористым мышьяком, почти не содержащей германия. Хлорид галлия лишь незначительно переходит в дистиллят. Коэффициент разделения германия и галлия при дистилляции хлоридов достигает -(10 —10 ) [68]. Полученный тетрахлорид германия после отделения от слоя соляной кислоты идет на очистку фракционной дистилляцией. Из кислого раствора после отгонки летучих хлоридов галлий экстрагируют (после вытеснения меди и восстановления железа до двухвалентного металлическим алюминием) изопропиловым эфиром [52]. [c.371]

    Для очистки тетрахлорида германия в основном пользуются методами дистилляции и экстракции. Как видно на рис. 94, в системе тетрахлорид германия — трихлорид мышьяка не образуется азеотропа. Однако простая перегонка не дает удовлетворительного разделения. Перегонкой в присутствии хлора, о которой говорилось ранее, также не удается достаточно полно удалить мышьяк. Это объясняется частичной обратимостью реакции (8) при температуре дистилляции вследствие избытка соляной кислоты. Только тщательной фракционной дистилляцией в адиабатических колонках (с эффективностью 40 теоретических тарелок) достигается разделение. В результате такой ректификации содержание мышьяка [c.375]

    Поведение мышьяка в различных степенях окисления изучали Секерский и сотр. [37] они выделили высокочистый изотоп As без носителя из германиевой мишени, облученной тепловыми нейтронами. Для этой цели авторы использовали систему ТБФ—НС1, которая позволяет отделять следовые количества мышьяка от макроколичеств германия. Метод разделения мышьяка и селена описан Москвиным [71], который также использовал систему ТБФ—H L [c.238]

Рис. 15. 33. Аниоиообменное разделение германия, мышьяка, железа и европия в растворе соляной кислоты [30]. Рис. 15. 33. Аниоиообменное разделение германия, мышьяка, железа и европия в <a href="/info/56032">растворе соляной</a> кислоты [30].
    Гетерополикислота образуется при экстракции изоамиловым спиртом, давая желтый раствор. В условиях извлечения германия мышьяк также извлекается. Смесью бутилового спирта с этилацетатом экстрагируются обе гетерополикислоты— и германо- и мышья-ковомолибденовая. При дальнейшем добавлении хлороформа германомолибденовая кислота снова переходит в водный слой, а мышьяковомолибденовая остается в органической фазе. Германомолибденовая кислота может затем быть извлечена изоамиловым спиртом (при соответствующем повышении концентрации минеральной кислоты). Разделение проводилось по следующей методике. К смеси различных количеств AS2O5 (от 0,1 мг до 10 мг) в виде раствора K3ASO4 и СеОз (от [c.54]

    Л. Таётог, например, детектировал хлориды германия, мышьяка, сурьмы и железа по СР , а хлорид железа также по Ре з [25]. На рис. 4 показана хроматограмма разделения [c.31]

    Разделение смеси германия (IV) и мышьяка (V) на колонке с анионитами в ОН-форме основано на том, что германий легко десорбируется 0,2 н. раствором уксусной кислоты. Мышьяк после извлечения германия элюируется раствором минеральной кислоты. Разную прочность связи германия и мышьяка с анионитом можно объяснить тем, что германиевая кислота значительно слабее мышьяковой. При промывании колонки кислотой более сильной, чем германиевая, например уксусной, германат-ионы связываются водородными ионами в малодиссоцииро-ванную НаОеОд. Вместе с тем концентрация ионов Н + недостаточна, чтобы образовались молекулы НзЛз04. [c.146]

    В работах Гадмора 131, 132] галогениды олопа, мышьяка и германия были разделены на химически инертной силиконовой пысоковакуумной смааке, нанесенной на изоляционный кирпич силь-о-сель. Гидриды кремния, фосфора, мышьяка, германия и серы были разделены газо-жидкостной хроматографией [134]. Разделение трихлорсилана, метилтрихлорсилана и других галогенсодержащих кремнийорганических соединений типа эфиров подробно исследовано п работах [142, 43]. [c.174]

    По одному из методов [50] 1 г пробы порошкообразного германия или его двуокиси помещают во фторопластовый стакан с крышкой, добавляют 10 конц. HNO3 и 30 мл конц. НС1 и нагревают до 100 — 120° С. Раствор переносят в кварцевую чашку, добавляют 20 мл графитового порошка и выпаривают досуха. В случае определения мышьяка в тетрахлориде германия в делительную воронку вносят смесь конц. HNO3 и НС1, вводят 10—20 г анализируемого тетрахлорпда германия, 5 мл четыреххлористого углерода и осторожно встряхивают. После разделении фаз органический слой выливают, кислотный слой переводят в кварцевую чашку, добавляют 20 л1г угольного порошка п выпаривают досуха. Концентрат помещают в кратер графитового электрода — анода диаметром 4,2 и глубиной 4 мм. Верхний )лсктрод затачивают на конус. Спектры возбуждают в дуге (10 а) в течение 40 сек. и регистрируют на кварцевом спектрографе на фотопластинках типа УФШ. Эталоны готовят путем внесения в стандартный раствор мышьяковистой кислоты, 20 мг угольного порошка и выпаривания досуха. Градуировочные графики строят в координатах ( j, — ф) — lg С по линиям As 2349 или 2288 А. [c.162]

    Предложен метод определения германия, фосфора и мышьяка [625], основанный на спектрофотометрировании желтых" пятен гетерополикислот определяемых элементов после их разделения хроматографированием на бумаге и проявлении азотнокислым раствором парамолибдата аммония. В качестве подвижного растворителя применяют бутанол, насьпценный 10%-ной HNOg. Разделение проводят методом нисходяш ей хроматографии. Метод применим для определения 2 мкг фосфора в присутствии 20-кратного количества Si, As, V и 5-кратного количества Ge. Если количества Fe, Мо и W соответственно составляют менее чем 0,15, 1,25 и 2,5 ч. от присутствующего количества фосфора, то эти элементы не мешают анализу. Хром мешает определению, если содержание его составляет более чем 0,15 ч.от присутствзтощего содержания фосфора. Мешающее влияние Fe и Сг, по мнению авторов, обусловлено образованием фосфатных комплексов этих элементов. [c.102]

    Экстракционный метод разделения основан на том, что Аз и Ое хорошо экстрагируются из сильносолянокислых растворов рядом органических растворителей таких, как хлороформ, четыреххлористый углерод, бензол и т. д., в то время как практически не переходит в этих условиях в органическую фазу [8, 9 10]. Несмотря на перспективность этого метода ему, по-видимому, уделялось до сих пор недостаточно внимания. В литературе нет описания процесса отделения радиоактивного мышьяка от германия методом экстракции за исключением краткого сообщения [7], в котором приведен малоудобный способ, представляющий сочетание дистилляции и экстракции. [c.65]

    Для разделения германия и мышьяка, очевидно, следует пользоваться более концентрированной кислотой, поскольку при этом увеличивается экстраги руемость гермаиня. Однако с повышением концентрации НС1 увеличивается концентрация Ge l4 и, следовательно, должна возрастать упругость пара последнего. Оптимальным условиям отвечает 7—9 N концентрация соляной кислоты. [c.74]

    В табл. V-24 приведены значения коэффициентов разделения разбавленных растворов примесей в четыреххлористом германии. Данные по равновесию жидкость — нар для неорганических хлоридов в основном относятся к менее летучим лимитирующим примесям— хлоридам железа (а = 1,10 ч- 1,19), алюминия (а = 1,39), фосфора (а = 1,37), мышьяка (а = 2). Органические примеси, содержащиеся в техническом четыреххлористом германии, более летучи, чем основа. К наиболее трудноотделяемым из них относятся 1,2-дихлорэтан (а = 1,11), метилтрихлоргерман (а = 1,25) и четыреххлористый углерод (а = 1,34). Как неорганические, так и органические примеси могут быть удалены из технического четыреххлористого германия методом ректификации. Однако для достижения глубокой очистки процесс должен проводиться в аппаратах с высокой разделяющей способностью, так как относительная летучесть некоторых примесей имеет величину близкую к единице. [c.191]

    Описаны методы избирательной экстракции ниобия и отделения его от тантала из концентрированных солянокислых растворов с использованием в качестве экстрагента раствора метил-диоктиламипа в ксилоле. Из разбавленных солянокислых растворов извлекается цинк в виде комплекса с метилдиоктиламином или трибензиламипом. Три-н.октиламин в керосине является эффективным реактивом для экстракции урана и молибдена из сернокислых растворов [14]. Известны методы разделения селена и теллура [83], экстракции германия, серебра, титана, мышьяка, сурьмы и других металлов с помощью К-додецилтриалкилметил-амина [18, 83]. Описаны методы экстракции молибдена, ванадпя и вольфрама из солянокислых растворов анилином [84]. [c.118]

    Сущность этих методов разделения состоит в том, что для эффективного разделения используют большую летучесть одного из компонентов системы — определяемого либо мешающего. Например, малые количества германия в различных материалах определяют после предварительной его дистилляции из солянокислой среды в виде СеС14. Для отделения следов кремния его выделяют в форме летучего 31р4 из сильнокислой среды в присутствии НР. Мышьяк и серу часто определяют в ряде материалов после их предварительного отделения в виде соответ-ствующил водородных соединений — НгЗ и АзНз. Содержание в металлах таких элементов, как углерод, сера, водород, можно найти путем прокаливания раздробленной пробы в атмосфере кислорода, в которой они превращаются соответственно в СОг, 50г и НгО. Определение воды в различных твердых образцах часто сводится к их нагреванию при температуре выше 100 °С, после чего содержание воды находят по разнице в массе пробы до и после нагревания. Используют Также методы непосредственного ее определения после удаления воды в виде водяного пара. [c.401]

    Отгонку следует рассматривать не только как метод концентрирования, но и как эффективный способ разделения. Регулируя температуру, из смеси можно последовательно выделять отдельные составные части. Напри- мер, в струе хлора при 60—85° С отгоняется хлорид вольфрама, при 150—275° С отгоняется хлорид платины и при 425—625° С хлорид иридия з . Отгонка хлоридов или бромидов мышьяка, олова, сурьмы, висмута, германия давно применяется для их отделения от других металлов, образующих нелетучие галоидные солиЗ - Не-, обходимо еще отметить отделение бора в виде летучего [c.73]

    Разделение посредством образования фторо-анионов. Осаждение сероводородом в растворах, содержащих фтористоводородную кислоту, не пользуется тем вниманием,. какого оно заслуживает, и бёз сомнения, это объясняется отсутствием навыков работы с такими растворами и необходимостью употребления особых сосудов вместо обычных стеклянных и фарфоровых. Тем не менее этот способ осаждения заслуживает серьезного внимания, например для отделения мышьяка, сурьмы, свинца, меди и др. от германия и олова, для отделения двухвалентного олова от четырехвалентного, а также трехвалентных мышьяка и сурьмы от соединений, содержащих их в пятивалентной форме. Руководящим указанием здесь является то, что в этих условиях не осаждаются элементы, образующие комплексные фторо-анионы, и что pH раствора должен быть приблизительно таким же, как и при обычных осаждениях этйх элементов. Для отделения от. было рекомендовано проводить осаждение в растворе, содержащем 5 мл соляной кислоты, 5 мл 48%-ной фторит стоводородной кислоты и по 0,15 г сурьмы и олова при общем объеме раствора 300 мл. [c.89]

    Отделение мышьяка. Перегонка трехвалентного мышьяка из солянокислого раствора является наиболее удовлетворительным методом отделения Тйышьяка от других членов этой группы, за исключением герма-нвд и селена. Последние встречаются редко и отделяются, как указано в разделах Ютделение германия , стр. 95 и Отделение селена и теллура (см. выше). В обычных случаях в предварительных отделениях необходимости нет, и мышьяк восстанавливают и перегоняют, как описано в гл. Мышьяк (стр. 303). Если в оставшемся растворе должны быть проведены другие разделения, следует выбрать тйкой восстанавливающий реактив, чтобы он при этих операциях не мешал. [c.98]

    Описаны методы отделения олова, основанные на образовании ком-плексныхуего анионов . фторид-ионами. На том жр принципе основан метод отделения мышьяка от германия Эти методы разделения дают удовлетворительные результаты, и главным препятствием к их широкому распространению являются неприятные свойства фтористоводородной кислоты и необходимость иметь сосуды, устойчивые к ее действию. Олово можно также полностью отогнать пропусканием сухого хлористого водорода через раствор соли олова (1У) н серной кислоте, нагретый приблизительно до 200° С. ч,,  [c.99]

    Селен можно отделить от теллура дистилляцией солянокислого раствора следующим образом . Анализируемую пробу помещают в коЛбу емкостью 150 мл, прибавляют серную кислоту и нагревают до 300— 330° С, пропуская через раствор струю хлористого водорода. Отго соби-рают в холодную воду и осаждают селен сернистым ангидридом, как указано на стр. 389. Раствор в колбе разбавляют так, чтобы концентрация серной кислоты в нем стала 4—5%-ной по объему, и осаждают теллур сернистым ангидридом и солянокислым гидразином, как указано на стр. 392. Количественное отделение как шестивалентного, так и четырехвалентного селена от теллура можно осуществить также в растворе, содержащем бромистовОдородную, фосфорную и селенистую кислоты. Разделение проводят таким путем Смесь окислов обоих элементов помещают в соответствующую К9лбу и растворяют в едком кали. Раствор нейтрализуют фосфорной кйЬлотой (нл. 1,7 г/см ) и затем добавляют 20 мл избытка этой кислоты. Прибавляют 1 г бромида калия и разбавляют до 50 мл. Соединяют с колбой, наполненной водой, пропускают через прибор СОд и кипятят, пока объем раствора не уменьшится до 15 мл. Вместо фосфорной кислоты и бромида калия можно пользоваться бромистоводородной кислотой или смесью бромистоводородной кислоты с бромом. Мышьяк, германий, олово и сурьма частично перегоняются совместно с селеном. [c.388]

    Мышьяк (П1) эффективно поглощается сильноосновным анионитом из концентрированной соляной кислоты [45 ] и поэтому может быть легко отделен от мышьяка (V) и от фосфора (V). Это разделение, как и отделение Аз (V) от Ое (IV), было исследовано Иошино [67]. Мышьяк (III) не поглощается анионитом из разбавленной плавиковой кислоты, тогда как германий и галлий удерживаются ионитом. На этом принципе основан метод выделения радиоактивного мышьяка без носителя [53]. Мышьяковистая кислота гораздо более слабая кислота, чем мышьяковая, благодаря чему они могут быть разделены с помощью слабоосновного анионита. Ионит поглощает только мышьяковую кислоту [3 ]. О хроматографическом отделении мышьяка (III + V) от фосфатов с применением сильноосновного анионпта сообщают Бруно и Беллуко [5]. Мышьяк элюируется 0,001Ж НС1, после чего раствором хлорида натрия элюируется фосфат-ион. [c.395]

    Представляет интерес использование в качестве неподвижных фаз (для анализа хлоридов различных металлов) расплавов неорганических солей, что позволяет проводить разделение при высоких температурах, не опасаясь испарения фазы. Так, анализ смеси Т1С14 и 5ЬС1з проводили при 240 °С на колонке длиной 3,6 м с эвтектической смесью 89% (мол.) В1С з и 11% (мол.) РЬСЬ (температура плавления 217 °С) на носителе С-22, обработанном хлороводородной кислотой [268]. При использовании других неподвижных фаз были разделены хлориды мышьяка, германия, ниобия и тантала. [c.236]

    Мейк с сотр. [37 определял значения D почти для всех металлов между гидроокисью циркония и растворами нитратов с различными pH. Исходя из полученных результатов, он предсказал, что эти ионообменники можно использовать для некоторых хроматографических разделений. К ним относится отделение свинца от германия, олова, мышьяка, сурьмы, висмута, селена и полония. [c.286]

    Хроматография хлоридов германия (IV), мышья-ка(И1), железа(1П), ртути(П) и олова(1У) изучена недавно Тадмором [10, 11, 60]. Он нашел, что хлориды гер-мания(1У) и мышьяка(1И) дают хорошо разрешимые пики нри работе газоадсорбционным методом с силоцелевым огнеупорным кирпичом при применении газо-жид-костного метода хлориды реагируют с силиконовой смазкой, используемой в качестве неподвижной фазы. Хлориды ртути (И) и железа (III) можно частично разделить нри 290°, если в качестве жидкой неподвижной фазы применить хлорид висмута, нанесенный на силоцелевый кирпич. Хотя полученные ники были достаточно острыми, а ложных сигналов не возникало, некоторые из веществ элюировались неполностью. Недавно сообщалось о разделении смеси хлорида, бромида и иодида олова (IV) на колонке с силоцелевым кирпичом и бромидом алюминия в качестве неподвижной фазы [60]. [c.54]


Смотреть страницы где упоминается термин Германий и мышьяк, разделение: [c.367]    [c.113]    [c.382]    [c.194]    [c.572]    [c.277]    [c.246]    [c.126]    [c.376]    [c.12]   
Жидкостная экстракция (1966) -- [ c.658 ]




ПОИСК







© 2024 chem21.info Реклама на сайте