Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий ниобием и танталом

    Электролиз расплавов. Получение ряда металлов осуществляется при электролизе расплавов. Такие методы разработаны не только для натрия, магния и алюминия, но и для редких металлов —бериллия, ниобия, тантала, урана, тория и т. д. [c.586]

    С плавление с едким натром. Способ заключается в переводе соединений ниобия и тантала в не растворимые в воде ниобат натрия и танталат натрия. Одновременно образуются вольфрамат, станнат, силикат и алюминат натрия. Их удаляют водным выщелачиванием.Также образуются Ре (ОН)а и Мп (0Н)2. Вместе с не растворимыми в воде ниобатом, танталатом и титанатом натрия они остаются в остатке от выщелачивания. При обработке остатка соляной кислотой железо и марганец переходят в раствор в нерастворившейся части остаются гидроокиси ниобия, тантала и титана. [c.66]


    Вследствие незначительной растворимости тетрафторида урана и в особенности двойных фторидов урана-аммония, урана-натрия или урана-калия [173, 275], а также возможности отделения урана от больших количеств циркония, ниобия, тантала, бора, железа, ванадия и других элементов, образующих растворимые фторидные комплексы [275, 991], метод отделения урана (IV) в виде фторидов нашел достаточно широкое применение. Методика осаждения урана (IV) плавиковой кислотой приводится в разделе Весовые методы определения . [c.272]

    Вся первая половина XIX в. отмечена открытием большого числа новых элементов. Английский химик Г. Дэви в начале века впервые применил электролиз растворов и расплавов солей для получения новых элементов. Так ему удалось получить и описать калий, натрий, магний, стронций, барий, кальций, газообразный хлор. В те же годы Берцелиус открыл церий, селен, кремний, цирконий, торий, а другие химики — бериллий, бор, палладий, радий, осмий, иридий, ниобий, тантал, йод и бром. К 1830 г. было выделено уже 55 элементов. Требовалась их систематизация с целью классификации по свойствам, сужения направления поиска новых элементов и предсказания свойств пока не открытых элементов. [c.13]

    Водород Гелий Неон. . Аргон. Криптон Ксенон. Радон Хлор. . Молибден Вольфрам Ниобий. Тантал. Титан Железо. Никель, Марганец Хром. . Стронций Барий Литий. Натрий. Калий. Рубидий Цезий.  [c.97]

    Фториды некоторых многовалентных металлов (титана, ниобия, тантала, молибдена и вольфрама) титруют потенциометрическим методом стандартным метанольным раствором метилата натрия в метилэтилкетоне или в его смеси с бензолом  [c.74]

    Хлористые соли ниобия, тантала, титана, железа, алюминия и другие легколетучие хлориды отгонялись из печи хлорирования и конденсировались. Хлориды редкоземельных металлов, кальция, натрия, тория и хлористое железо, находящиеся в остатке после хлорирования, извлекались из шихты водой при выщелачивании. [c.33]

    Калий. . Криптон. Лантан. , Литий. . Лютеций. Менделевий Магний Марганец Молибден. Азот. . . Натрий. . Ниобий.. Неодим Неон. . . Никель. . Нобелий. Нептуний Кислород Осмий. . Фосфор Протактиний Свинец. . Палладий Прометий Полоний. Празеодим Платина Плутоний Радий. Рубидий Рений. Родий. Радон. Рутений Сера. . Сурьма. Скандий Селен Кремний Самарий Олово. Стронций Тантал.  [c.9]

    Отделить титан от алюминия, хрома, марганца, никеля, урана (VI), фосфора и бора можно осаждением купфероном в сернокислой среде . Осаждение можно проводить также и из виннокислого раствора, который более устойчив в отнощении гидролиза. Совместно с титаном купферон осаждает железо, ванадий, цирконий, ниобий, тантал, уран (IV) и частично вольфрам. От циркония титан может быть отделен осаждением циркония фосфатом натрия или фениларсоновой кислотой в присутствии перекиси водорода  [c.139]


    В тех случаях, когда окислы металлов прочные, например у титана, циркония, ниобия, тантала, металлотермическое восстановление дает продукт, содержащий некоторое количество растворенного кислорода, который сообщает этим металлам хрупкость. В некоторых случаях реакции восстановления вообще не проходят. Тогда используют фториды или хлориды металлов, которые восстанавливают магнием или натрием. Магний имеет некоторое преимущество перед натрием, так как последний часто содержит кислород. [c.59]

    Руду разлагают сплавлением со щелочью и перекисью натрия. Плав выщелачивают водой и в аликвотной части определяют вольфрам, как описано выше. Этим методом можно определить от 0,003 до 1,5% Ш в присутствии до 10% Аз, до 3—6<Уо 5Ь, до 0,5—3% Мо, до 0,3% Сг и до 0,1 % V, 5е и Те. Фтор, титан, фосфор, ниобий, тантал, медь и драгоценные металлы, за исключением рения, определению вольфрама по этому методу не мешают. [c.199]

    Особо чистые металлы играют огромную роль в развитии современной науки и техники. Так, атомная энергетика потребляет большое количество металлов и других материалов высокой степени чистоты. Кроме урана и тория, являющихся основными видами ядерного горючего, широкое применение в атомной энергетике находят литий, бериллий, цирконий, ниобий, тантал, натрий, алюминий, кадмий, платина, висмут. В уране, поступающем в атомные реакторы, примесь бора не должна превышать стотысячных долей процента. Цирконий, идущий на оболочки урановых стержней, подвергается сложной очистке от примеси гафния. Создание термоядерной энергетики потребует новых материалов — высокочистых металлов содержание отдельных примесей в таких материалах должно быть на уровне 10 —10 1 %. [c.82]

    Марганец Молибден Натрий Ниобий Неодим Никель Осмий Фосфор (тверд.) Свинец Палладий Полоний Празеодим Платина Плутоний(жидк.) Радий Рубидий Рений Родий Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово (жидкое) Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Иттрий Иттербий Цинк Цирконий [c.25]

    А Сплавление с тетраборатом особенно эффективно для разложения кислородных соединений алюминия (корунд, рубин, сапфир), циркония (бадделеит), кремния (турмалин), олова (касситерит), ниобия, тантала Д, циркониевых руд, минералов РЗЭ и шлаков. Сплавление с тетраборатом можно применять при определении железа (П) в силикатах, однако следует иметь в виду, что некоторое количество железа (И) окисляется, даже если сплавление проводят в атмосфере инертного газа [4.364]. Смесь расплавов боросиликатного стекла и вольфрамата натрия была использована для определения воды в силикатах [4.365]. Условия разложения некоторых материалов тетраборатом натрия приведены в табл. 4.19. [c.98]

    Электролиз растворов и расплавов применяется для получения веществ и различных защитных и декоративных покрытий. Во многих случаях это почти единственный метод выделения некоторых металлов, например алюминия, натрия, калия, ниобия, тантала из их соединений. [c.32]

    Химический состав титаномагнетитовых руд разнообразен кроме основных компонентов—железа и титана — они содержат кремний, алюминий, ванадий, хром, кальций, магний, натрий, калий, марганец, никель, кобальт, фосфор, серу, мышьяк, а также иногда ниобий, тантал, редкие земли и платину. [c.235]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]


    Осажденные твердые катализаторы для приготовления высокомолекулярных полиэтиленов при низком давлении можно готовить взаимодействием солей титана, циркония, гафния, тория, урана, ванадия, ниобия, тантала, хрома, молибдена и вольфрама с триалкилалюминием [101]. Вместо триалкилалюми-ния можно применять галогениды алюминия [102] и алкильные производные магния и цинка [103]. Возможно также использовать алкильные производные металлов группы I, например натрия или лития [52, 75]. Аналогичные -катализаторы могут использоваться и для полимеризации высших олефинов [1, 59]. [c.288]

    Разложение плавиковой кислотой минералов, содержащих МЬ, Та, 2г, позвляет на холоду осуществить отделение ниобия, тантала и циркония от нерастворимых фторидов тория и р. з. э. Если для разложения минерала использовалось сплавление с бисульфатом натрия, к плаву добавляют несколько миллилитров серной кислоты и вновь нагревают до красного кален-ия. Плав охлаждают, смачивают водой, а затем растворяют в большом объеме воды и кипятят сутки. При этом в результате гидролиза осаждаются Т1, ЫЬ и Та. После испытания раствора перекисью водорода на присутствие Т1 осадок отфильтровывают, а из фильтрата аммиаком осаждают гидроокиси тория, р. 3. э., циркония, железа и др. Однако этого метода следует избегать ввиду большой адсорбционной способности осадков, получающихся при гидролизе [159] лучше пользоваться, если возможно, плавиковой кислотой для разложения. [c.160]

    Получающиеся на первой стадии сульфаты этих элементов препятствуют образованию оксодисульфатов ниобия и тантала. Если же продукты первой стадии удалить из сферы реакции и продолжить сульфатизацию, то образуются оксодисульфаты. В присутствии катионов элементов I и II групп образуются двойные сульфаты, например рубидия — ниобия, рубидия — тантала, марганца—тантала, натрия — ниобия, натрия — тантала и др. Нами совместно с Р. Д. Масленниковой, Л. С. Перепелицей, Г. Н. Латыш получены ИК-спектры, рентгенометрические константы и микроскопические характеристики этих соединений, установлен их химический состав. Позже совместно с Т. Н. Ясько, В. К- Карнауховой, М. Л. Шепотько и др. синтезированы и исследованы сульфаты рубидия—тантала (1981) и цезия—тантала (1982). [c.83]

    Осадители. В качестве осадителей для разделения н выделения отдельных компонентов анализируемых смесей применяют разнообразные химические соединения. Главнейшими из них являются сероводород, осаждающий в виде сульфидов ионы V, IV и частично III аналитических групп (см. Книга I, Качественный анализ, гл. VI—VIII), а также разлагающий при опред еленных значениях pH анионы АзОз , АзО , VOз, М0О4 , 04 и др. (см. Книга I, Качественный анализ, гл. XII) водный раствор аммиака, осаждающий катионы бериллия, железа (III), алюминия, таллия, галлия, индия, ниобия, тантала, урана, редкоземельных металлов и др. фосфаты щелочных металлов и аммония ацетат натрия едкие щелочи сульфид аммония и т. д. [c.354]

    Некоторые металлы, потребность в которых в связи с развитие.м новой техники непрерывно возрастает, вообще могут быть получены только три применении вакуума, как, например, ниобий и таитал [274]. Эти металлы, как и титан, являются самыми перспективными для химического аппаратостроения, так как они обладают превосходной коррозионной устойчивостью по отношению к действию многих агрессивных сред и прежде всего слот. Ниобий, тантал, их сплавы и некоторые соединения могут быть применены для изготовления нагревателей, конденсаторов, реакторов, аэраторов, адсорберов, мешалок, клапанов, трубопроводов, сит, проволочных фильтров. На ниобий практически не действуют применяемые в качестве жидко-металлических охладителей в ядерных реакторах жидкие расплавы натрия и его сплава с калием, лития, висмута, свинца, ртути, олова. Химическая устойчивость обусловлена наличием окисной пленки на поверхности металла. Эти металлы тугоплавки, имеют низкую упругость пара при высоких температурах  [c.340]

    По нелетучему остатку, получающемуся после обработки нечистой кремнекислоты смесью серной и фтористоводородной кислот, можно установить, какие компоненты нужно искать в сложном осадке от аммиака. Если этот первый остаток весит не более 2—3 мг и после сплавления с небольшим количеством карбоната натрия легко растворяется (обычный случай) в горячей разбавленной соляной кислоте, то можно с полной уверенностью считать, что тантал и ниобий не будут найдены в последующем осадке от аммиака и что исходный анализируемый материал не содержит заметных количеств фосфора, циркония или титана. Большой нелетучий остаток после обработки НЕ -Ь Н2804 или остаток, не дающий после сплавления с содой прозрачного раствора при растворении в соляной кислоте, ясно указывают на присутствие необычных составных частей. Так, остаток может содержать сульфат бария, сульфат свинца, окислы ниобия, тантала или сурьмы или титан, цирконий и олово, одни или вместе с фосфором. В таких случаях даже лучше исследовать раствор нелетучего остатка отдельно, прежде чем присоединять его (целиком или аликвотную чать) к фильтрату, полученному после отделения кремнекислоты, если только в результате тщательно проведенного предварительного качественного анализа это не стало изЛишним [c.113]

    Г, кальция aHj примеияют в порошковой металлургии для получения порошков гидридов титана, циркония, ниобия, тантала из их окислов. Эти Г. могут быть превращены в металлы прокаливанием или переплавкой в вакууме 1,5—2%-ный раствор NaH в расплаве NaOH применяют для снятия окисной пленки с металлов. LiH и NaH используют для получения боргидридов (см. Вороводороды) и алюмогидридов, а также в органич. синтезе (См. также Лития гидрид, Натрия гидрид). [c.450]

    Главное промышленное значение имеют месторождения гранитных пегматитов натро-литиевого типа, а из них — сподуменовые пегматиты и петалито-лепидолитовые пегматиты. В них сосредоточены огромные запасы лития в виде крупных месторождений с весьма высоким содержанием основных ценных в промышленном отношении литиевых минералов — сподумена, лепидолита, амблигонита и отчасти петалита в сочетании с другими полезными минералами таких элементов, как цезий, бериллий, олово, ниобий, тантал. Этот тип месторождений дает около 95% всего литиевого сырья, добываемого за рубежом. [c.16]

    В одном из вариантов процесса исходный раствор содержал 140 г л Nb и 20 г л Та. Кислотность раствора соответствовала НР 8,3 н., НС1 0,2 н. Раствор направляли на экстракционный каскад, где осуществлялись смесительные и отстойные операции. Тантал концентрировался в органической фазе, откуда его выделяли в форме танталата натрия добавлением раствора карбоната натрия. Ниобий выделяли из водной фазы в рме KaNbP, добавлением к раствору карбоната калия и плавиковой кислоты. [c.524]

    Мешающие ионы. Анализируемый раствор не должен быть слишком кислым. Мышьяк (V) образует с применяемым реактивом аналогичный осадок. Если мышьяка (V) не слишком много и если осаждение проводят на холоду, то он не мешает. Кремнекислоту надо удалить предварительно оставшиеся малые ее количества не мешают. Вольфрам надо предварительно отделить, так как он образует осадок фосфоровольфрамата. Хлорид- и сульфат-ионы замедляют осаждение при высоком их содержании приходится вводить большой избыток реактива. Если не требуется очень большая точность, осаждение фосфоромолибдата можно проводить в 3 н. соляной кислоте или 1 н. серной кислоте. Перхлорат-ионы не мешают. Ионы калия могут войти в состав осадка вместо ионов аммония. Фторид-ионы образуют комплексные ионы с молибденом и потому мешают. Их надо отделить перед осаждением или (если их мало) связать в комплекс добавлением борной кислоты. Ванадий (V), образующий фосфорованадомолибдат, надо предварительно восстановить до ванадия (IV) прибавлением солянокислого гидразина. Ванадий (IV) не мешает, если осаждение проводят на холоду. Висмут, ниобий, тантал, титан и цирконий образуют малорастворимые в сильных кислотах фосфаты, которые осаждаются в небольших количествах вместе с фосфоромолибда-том. Однако при растворении полученного осадка в растворе едкого натра или аммиака указанные фосфаты остаются нерастворенными. При проведении точных анализов такой остаток надо сплавить с карбонатом натрия, плав обработать водой, [c.1083]

    Сложнее обстоит дело с синтезом карбонилов ниобия, тантала и протактиния. В 1959 г. Р. Пруетт и др. [17, 131] запатентовали метод получения карбонилов ниобия N 2 (СО) 12 и тантала Ta2( O)i2 взаимодействием соответствующих хлоридов с окисью углерода с использованием металлического натрия и дифенила в диглиме. Процесс проводился при 25—70 °С и 35—70 ат окиси углерода. Попытки других исследователей синтезировать карбонилы ниобия и тантала этим методом к успеху не привели. Последнее замечание не должно ставить под сомнение возможность синтеза Nb2( O)i2 и Ta2( O)i2, который подсказывается существованием соединений типа [Na ( eHi403)2][Nb (СО)в] и [Ыа(СвНиОз)12][Та(СО)в]. [c.66]

    Этот способ получил название алюмотермии. Позже в качестве металлов-восстановителей стали пользоваться натрием, магнием, кальцием и другими активными металлами. Так возникли натрийтермия, магнийтермия и т. д. Особенно часто для получения бериллия, титана, циркония, ниобия, тантала и других металлов применяется натрийтермия и магнийтермия. В основе этих металлотермических процессов лежат реакции  [c.103]

    К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы хром, ванадий, молибден, ниобий, тантал, р-кобальт а-железо (ниже 900° и выше 1400°С, а в области 910°—1400° С железо имеет ГЦК-струк-туру), титан, цирконий, гафнпй, щелочные элементы — литий, натрий, калий, рубидий, цезий, щелочноземельные — кальций, стронций, барий, актиниды — уран, нептуний, плутоний. Из интерметаллических соединений в [c.160]

    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    Марганец Молибден Натрий. Ниобий. Неодим. Никель. Осмий Фосфор. Свинец. Палладий Празеодим Платина Рубидий Рении. Родий. Рутений Сурьма Скандий Селен. Кремний Самарий Олово. . Стронци Тантал Теллур Торий. Титан.  [c.22]

    Отделение вольфрама от ниобия и тантала обычно связано с большими затруднениями, >ыщелачивание смеси окислов, выделенных аммиа-К0Л1, сульфидом аммония или гидролизом из кислого раствора, или выщелачивание водой плава с карбонатом натрия и серой, так же как и кипячение щелочного раствора вольфрамата, ниобата и танталата, не дают удовлетворительных результатов Более того, ниобий и тантал препятствуют количественному осаждению вольфрама цинхонином (стр. 704). Для pa i-деления этих элементов можно использовать три метода , в зависимости от сопровождающих вольфрам элементов. Из них магнезиальный рекомендуется в тех случаях, когда требуется отделить вольфрам от титана, ниобия, тантала и циркония. Этот метод заключается в следующем. Смесь окислов (0,2—0,5 г) сплавляют с 4 г карбоната калия в платиновом тигле на сильном пламени в течение 10—15 мин. Сплавленную массу выщелачивают 200 мл горячей воды, следя за тем, чтобы полностью разложились комочки плава. Для этого нх разминают стеклянной палочкой, а раствор слабо кипятят. Горячий раствор обрабатывают свежеприготовленным реактивом (1 г кристаллического сульфата магния, 2 а хлорида аммония, 25 мл воды и 4 капли раствора аммиака). Покрывают часовым стеклом и оставляют стоять на закрытой водяной бане 1 час. Хлопьевидный осадок переносят на неплотный фильтр диаметром II см и промывают раствором хлорида аммония (насыщенный раствор NH l разбавляют в 4 раза водой). [c.619]

    Для исследования процессов, происходящих в обычной фосфатной ванне, С. И. Скляренко и О. С. Дружинина [Ч] определили напряжение разложения пяти- окисей тантала и ниобия, растворенных в расплавленной смеси пирофосфата натрия 1и хлористого натрия. Полученные данные позволили сделать вывод, что во всех исследованных случаях наблюдается напряжение разложения пирофосфата натрия, а тантал и ниобий выделяются в результате вторичной реакции восстановления яятиокиси натрием. [c.59]


Смотреть страницы где упоминается термин Натрий ниобием и танталом: [c.90]    [c.38]    [c.38]    [c.143]    [c.227]    [c.166]    [c.354]    [c.876]   
Успехи химии фтора (1964) -- [ c.101 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Ниобий тантале

Тантал



© 2024 chem21.info Реклама на сайте