Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Акрилаты

    До сих пор не внедрены в промышленность следующие методы получения акрилатов альдольная конденсация формальдегида с уксусной кислотой в паровой фазе на катализаторах из цеолита Са при 375—385 °С [38—39] взаимодействие формальдегида, спиртов и уксусной кислоты [40] реакция формальдегида и эфиров в присутствии солей щелочных металлов карбоновых кислот [41], метаборатов Na или К [42] и цеолитов [43]. [c.149]


    Выпуск акриловой кислоты составляет 4500 т и распределяется следующим образом 1360 т — для производства эфиров и солей акриловой кислоты (полиакрилаты аммония и натрия), 1780 т — используется в текстильной промышленности, при бурении нефтяных скважин, в производстве коагулянтов. В первую очередь акриловая кислота и ее соли [143] идут на изготовление водорастворимых полимеров ц сополимеров, которые применяются в качестве замасливателей, апиретур, связующих, загустителей, диспергаторов. Для этой цели служат также и сополимеры с акрилатами. [c.160]

    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Сильное влияние на скорость омыления мономера оказывает pH среды. Так, омыление метил- и этилакрилатов при pH 7 протекает настолько медленно, что им можно пренебречь, а в щелочной среде скорость омыления очень велика даже при комнатной температуре. Акрилаты гидролизуются быстрее, чем метакрилаты, причем скорость этой реакции падает с ростом длины углеводородной цепи спиртового остатка. [c.390]

    Эпоксидные смолы и акрилаты. ... 18 30 40 [c.330]

    В процессе полимеризации в водной среде возможен гидролиз этих мономеров. Указанные особенности акрилатов отражаются на механизме образования и стабилизации полимер-мономерных частиц при эмульсионной полимеризации, на кинетике процесса, на протекании вторичных процессов, на адсорбции взятого для получения эмульсии мономеров эмульгатора и на агрегативной устойчивости получаемых латексных систем [4]. При эмульсионной полимеризации водорастворимых мономеров под [c.388]


    В бумажной промышленности США находят сбыт остальные 6% производимых акрилатов, а в Европе эта промышленность является основным потребителем акрилатов. Главным образом они употребляются для мелования бумаги и картона, а также для получения [c.160]

    До eux пор важнейшим остается метод, основанный на работах Реппе о присоединении СО и воды или спиртов к ацетилену нри каталитическом воздействии Ni( 0)4. Синтез акрилатов протекает при 35 — 45 °С под давлением стехиометрически по уравнению  [c.148]

    Суш,ествует семь промышленных методов получения акриловой кпслоты и акрилатов. Если более старые методы базируются в основном на ацетилене, то в будуш,ем решающую роль будут играть процессы, где исходным продуктом является пропилен. [c.148]

    Мощности по производству акриловой кислоты и Таблица 37 акрилатов [c.350]

    Основа ПС — хлорметилированный сшитый полистирол Ст —стекло или кремнезем АОС — продажная анионообменная смола ПМА — полиметил-акрилат. [c.99]

    Предложен новый усовершенствованный способ прямого получения акрилатов [25, 26]. Кетен взаимодействует при 70—110 °С с метилалем с образованием метилового эфира 3-метоксипропионовой кислоты в присутствии BF3, TIF4, HPFg, BF3 2(СзН5)20 и других катализаторов. В результате пиролиза этого сложного эфира при 190—220 °С в присутствии кислоты выделяется метилакрилат [27, 28]. [c.149]

    Лаки на основе растворимых акрилатов получили признание для окраски бытовых приборов и кузовов автомобилей методом распыления. Лаки горячей сушки содержат менее 50% акрилатов, а лакн холодной сушки в основном состоят из акрилатов. Для лаков горячей сушки используют также стирол, меламиновые и эпоксидные смолы. Значение этих лаков в будущем сильно возрастет. [c.160]

    Еще 6% акрилатов (преимущественно в форме дисперсий) используются для отделки кожи. Акрилатные дисперсии повышают эластичность п прочность склеивания покровного слоя с основой. При этом метиловый эфир, дающий мягкие пленки, употребляется прежде всего для облицовки кожи, а бутиловый эфир — для обработки тяжелой кожи. Распространение искусственной кожи (напрпмер, марки корфам фирмы Ви Роп1) неминуемо вызовет увеличение потребления акрилатов. [c.160]

    В табл. 16 приведены свойства некоторых нолиакрилатов. Наиболее широкое распространение получили следующие сопо-лилгеры акрилатов  [c.162]

    Подобные результаты были получены на таких полимерах, как акрилаты [153], которые относительно плохо растворимы в мономере. При очень низкой степени превращения (нанример, 2% для бутилакрилата) полимер может начать осаждаться из раствора в виде коллоидных гелей. Можно ожидать, что строение образующегося в этом случае полимера будет сильно-препятствовать диффузии больших радикалов. Эти полимеры имеют не простую прямую цепочку полимерные цепи связаны между собой в нескольких точках. Диены, например изопрен и бутадиен, наиболее склонны к образованию таких перекрестных связей, так как образующийся полимер содержит двойные связи. Сравнительно недавно Бенсон и Норс [154] показали, что, используя смешанные растворители и меняя таким образом вязкость в значительном интервале, можно наблюдать соответствующее изменение величины А)(, в то же время кр не изменяется. Нозаки [155] показал, что если достаточно долгое время подвергать фотолизу водную эмульсию винилового мономера для образования стабильных частиц, то этп последние будут содержать долгоживущие радикалы полимера, которые могут продолжать реагировать с мономером в течение 24 час и более . Гелеобразные частицы этилендиметилакрилата дают спектры парамагнитного резонанса, показывающие, что концентрация частиц с неспаренными спинами [157] достигает 10 — Эти образцы полностью стабильны в отсутствие Ог. [c.520]

    Ацетаты и акрилаты, органические кислоты и их ангидриды, хлоран-гидриды органических кислот, хлор-бензолы, хлорксилолы, хлорнафта-лины за исключением гексахлорбензола [c.31]

    При реакции несимметричного диена с несимметричным диенофилом возможно образование двух структурных изомеров. Но в этой области имеется недостаточно работ, чтобы могли быть сделаны широкие обобщения. Отмечено, однако, что если в системе, указанной выше, К-метильный радикал, то образуется г ыс-о/)то-конфигурация. Микс и Рэгсдаль [94] при конденсации пиперилена (1,3-пентадиена) с акрилонитрилом и метил-акрилатом обнаружили в обоих случаях образование орто-шзомеров в количестве, в семь раз большом, чем жета-изомеров, что согласуется с электронной тоорней  [c.467]

    В присутствии такого мономера, как акронитрил или метш[акрилат, вместо реакции (32) идет инициирование цепи [c.135]

    Характерной особенностью латексов акрилатных полимеров является высокая чувствительность их агрегативной устойчивости к содержанию гомополимера акрилатов в исходном мономере. Даже незначительные количества (следы) полимера в мономере способствуют резкому снижению устойчивости образующегося латекса как к действию высоких температур (при отгонке незаполимеризовавшихся мономеров), так и при механических воздействиях на латекс (в процессе транспортирования). [c.388]

    Акрилаты обладают значительной полярностью и растворимостью в воде, уменьшающейся с повышением алкильной цепи и зависящей от наличия и природы заместителя. Так, растворимость при 20 °С составляет для метилакрилата 5,2%, этилакрилата 1,5%), бутилакрилата 0,16%), метилметакрилата 1,3%), бутил-метакрилата 0,003%. [c.388]


    Для улучшения способности к вулканизации в состав каучуков вводят мономеры, имеющие реакционноспособные функциональные группы. Чаще всего это — винилхлорацетат, глицидил-акрилат или метакрилат, аллилглицидиловый эфир, р-хлорэтил-метакрилат, некоторые акриламиды и др. [23]. При введении таких мономеров в состав сополимера увеличивается скорость вулканизации известными вулканизующими агентами [11], создается возможность проведения термовулканизации и увеличения густоты вулканизационной сетки с помощью специальных присадок [24], а также появляется способность вулканизоваться солями жирных кислот в присутствии серы, органических солей аммония, диэтил-дитиокарбамата цинка и др. [1, 23, 25]. Для повышения теплостойкости в резиновые смеси на основе таких каучуков вводят антиоксиданты [25]. [c.394]

    В СССР были получены следующие каучуки полибутадиены (СКД-Ж), сополимеры бутадиена со стиролом (СКС- ОЖ), 2-метил-5-винилпиридином (СКМВ-ЮЖ), р-диэтиламиноэтилмет-акрилатом (СКАЭ-10Ж), акрилонитрилом (СКН-18Ж, СКН-26Ж, СКН-40Ж). В качестве стабилизаторов применяли окрашивающие и неокрашивающие антиоксиданты. Каучуки имели следующую характеристику  [c.453]

Рис. 1У-10. Зависимость скоростаого коэффициента от порозности сдоя — стеклянные шарики — песок Т — гранулы акрилата V — магнезит Д — уголь. Рис. 1У-10. Зависимость скоростаого <a href="/info/3324">коэффициента</a> от порозности сдоя — <a href="/info/477149">стеклянные шарики</a> — песок Т — гранулы акрилата V — магнезит Д — уголь.

Смотреть страницы где упоминается термин Акрилаты: [c.148]    [c.149]    [c.160]    [c.160]    [c.161]    [c.162]    [c.162]    [c.162]    [c.162]    [c.315]    [c.350]    [c.351]    [c.373]    [c.523]    [c.127]    [c.145]    [c.307]    [c.408]    [c.502]    [c.141]    [c.191]    [c.733]    [c.202]    [c.202]    [c.282]   
Фенольные смолы и материалы на их основе (1983) -- [ c.22 ]

Химический энциклопедический словарь (1983) -- [ c.17 ]

Общая химическая технология органических веществ (1966) -- [ c.237 , c.239 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.17 ]

Катализ в неорганической и органической химии книга вторая (1949) -- [ c.494 ]

Энциклопедия полимеров том 1 (1972) -- [ c.35 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.35 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.35 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.159 , c.216 , c.410 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.88 ]

Общая химическая технология органических веществ (1955) -- [ c.396 ]

Справочник резинщика (1971) -- [ c.0 ]

Санитарная химия полимеров (1967) -- [ c.222 , c.223 , c.229 , c.230 ]

Промышленное применение металлоорганических соединений (1970) -- [ c.0 ]

Сырье и полупродуктов для лакокрасочных материалов (1978) -- [ c.96 ]

Материалы для лакокрасочных покрытий (1972) -- [ c.65 , c.270 ]

Сульфирование органических соединений (1969) -- [ c.0 ]

Сырье и полупродукты для лакокрасочных материалов (1978) -- [ c.96 ]

Технология пластических масс (1977) -- [ c.108 , c.123 ]

Химия и технология пленкообразующих веществ (1978) -- [ c.7 , c.249 ]

Неметаллические химически стойкие материалы (1952) -- [ c.307 ]

Химическая переработка нефти (1952) -- [ c.175 , c.335 , c.357 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.88 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]

Основы технологии синтеза каучуков Изд 2 (1964) -- [ c.294 ]

Химическая переработка нефти (1952) -- [ c.175 , c.335 , c.357 ]




ПОИСК







© 2024 chem21.info Реклама на сайте