Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морозостойкость

    Бутадиен-стирольный каучук растворной полимеризации превосходит эмульсионный бутадиен-стирольный каучук по целому ряду технически ценных свойств, таких, как сопротивление износу, морозостойкость, эластичность, теплообразование, остаточная деформация и сопротивление разрастанию трещин. [c.281]

    При понижении температуры уменьшается подвижность полимерных цепей, что приводит к уменьшению эластичности каучуков и резин. На практике сохранение эластических свойств резин характеризуют коэффициентом морозостойкости Км [c.91]


    Весьма распространенным синтезом на базе бутиловых спиртов является производство фталатов. Дибутилфталат является одним из наиболее известных и давно применяемых пластификаторов для полихлорвиниловых и других смол, а также для резиновых смесей. Дибутилфталат отличается высокой активностью и хорошей совместимостью с полихлорвиниловой смолой, обеспечивает высокую (до —55° С) морозостойкость пластикатов на его основе. Однако повышенная летучесть его приводит к быстрому старению и износу изделий из пластиката. Вследствие этого в последние годы применение дибутилфталата в значительной мере уменьшилось за счет увеличения масштабов использования фталевых эфиров высших спиртов (Се и выше). Дибутилфталат используется в настоящее время в качестве активной добавки в смеси других низколетучих, но менее активных пластификаторов. [c.76]

    В СССР и за рубежом разрабатывают жидкостные, вакуумные и лазерные приборы для обнаружения утечек, В ФРГ используют жидкостные приборы для подземных резервуаров с двойными стенками. Пространство между стенками резервуара заполняют морозостойкой контрольной жидкостью. Прн разгерметизации внутренней стенки контрольная жидкость вытекает в резервуар с нефтепродуктом, при неисправности наружной стенки —в грунт. В полом пространстве между стенками резервуара создается разрежение, которое фиксируется. [c.136]

    Наряду с производством каучуков, полностью или частично заменяющих натуральный каучук при изготовлении автомобильных шин и массовых резинотехнических изделий (бутадиен-сти-рольные каучуки, полиизопрен и полибутадиен), выпускаются синтетические каучуки, обладающие бензо- и маслостойкостью, термостойкостью, высоким сопротивлением истиранию, стойкостью к агрессивным средам, газонепроницаемостью, высокой морозостойкостью— свойствами, которые отсутствуют у натурального каучука. [c.8]

    Некоторые резины при высоких нагрузках сохраняют эластичность, несмотря на высокую степень кристалличности сырого каучука, поэтому характеристика низкотемпературных свойств резин, полученных на основе кристаллизующихся каучуков, только ио величине коэффициента морозостойкости является недостаточной. [c.91]

    Необходимо отметить лишь, что выход спиртов С,—Сд в данном процессе составляет 13,1—13,2%. Спирты С,—Сд испытывались в производстве пластификаторов. При этом было отмечено, что морозостойкость пластикатов, полученных на основе фталевых эфиров этих спиртов, соответствовала техническим условиям на кабельный пластикат. [c.123]

    Тормозные системы автомобилей и других механизмов с гидроприводом, снабженных резиновыми деталями из масло- и морозостойкой резины в качестве рабочей жидкости [c.190]


    В принципе, морозостойкость зависит от тех же параметров, что и эластичность, однако, так как морозостойкость определяется обычно при температурах, близких к температуре стеклования, зависимость коэффициента морозостойкости от молекулярных параметров выражена слабее, чем при измерениях эластичности. [c.91]

    По сравнению с эмульсионными растворные бутадиен-сти рольные каучуки характеризуются повышенными эластичностью, морозостойкостью и сопротивлением истиранию. [c.13]

    Существенным недостатком оценки работоспособности резин по данным коэффициента морозостойкости является также то, что [c.91]

    Термоэластопласты имеют высокие значения сопротивления разрыву, относительного удлинения, эластичности, сопротивления раздиру и стойкости к многократным деформациям, морозостойкости. Оптимальные физико-механические свойства достигаются в тех случаях, когда разность между температурами стеклования соответствующих блоков превышает 100°С. [c.284]

    Для некристаллизующихся каучуков коэффициент морозостойкости плавно изменяется в зависимости от температуры и быстро уменьшается до нуля около температуры стеклования [49]. [c.91]

    Полибутадиены с высоким содержанием ц с-1,4-звеньев (более 96%) характеризуются значительной склонностью к кристаллизации, что существенно ухудшает морозостойкость вулканизатов. Один из способов повышения морозостойкости указанных каучуков— введение в полимерную цепь некоторого количества (5—15%) чужих звеньев. Это может быть достигнуто путем сополимеризации бутадиена с изопреном [53] или 1,3-пентадиеном [54]. [c.183]

    Сопротивление разрыву, МПа Относительное удлинение, % Остаточная деформация, % Эластичность по отскоку, % при 20 С при 100 °С Истираемость (на 40 м пути), мм Сопротивление разрастанию трещин, тыс. циклов Теплообразование по Гудричу, С Коэффициент морозостойкости при —45 С при —55°С [c.194]

    Однако различия в молекулярных параметрах этих каучуков проявляются в ряде динамических характеристик и, особенно, в морозостойкости резин, обусловливаемой микроструктурой полимерных цепей. В числе других отличий сопоставляемых вулканизатов следует отметить их более высокие по сравнению с резинами на основе СКД напряжения при удлинении 300% и более низкое теплообразование при многократных деформациях. С другой стороны, вулканизаты на основе СКД-2 характеризуются меньшим сопротивлением разрастанию трешин. Износостойкость всех типов резин практически одинакова и очень высока. [c.195]

    С увеличением молекулярной массы тройных сополимеров возрастает степень вулканизации, напряжение при удлинении 300%, сопротивление разрыву, эластичность по отскоку, износостойкость и снижается теплообразование и накопление остаточной деформации вулканизатов. С повышением непредельности сополимеров с близкой вязкостью по Муни возрастает их жесткость и восстанавливаемость, снижается характеристическая вязкость и пластичность вальцуемость при этом улучшается. Вулканизаты сополимеров с большей непредельностью имеют более низкие коэффициент теплового старения, морозостойкость и износостойкость (см. табл. 2) [60, 61]. [c.313]

    Литиевый полиизопрен при 20°С обладает сопротивлением разрыву близким к прочности НК, но значительно уступает последнему при повышенных температурах (табл. I). От НК он отличается также меньшим сопротивлением раздиру, отсутствием клейкости, обладает несколько более высокой температурой стеклования (в среднем — 68 против —72°С для НК) и более низким коэффициентом морозостойкости. [c.206]

    Резины на основе модифицированного полиизопрена обладают заметно лучшей морозостойкостью, по-видимому, вследствие снижения их кристаллизуемости. Описана модификация натурального каучука тиокислотами или малеиновым ангидридом для получения специальной полярной марки НК [3]. Модификация как способ повышения морозостойкости резин, можно полагать, будет иметь еще большее значение для бутадиенового каучука. [c.232]

    Описано катализируемое соединениями платины присоединение замещенных силанов, имеющих связь 5 —Н, и радикальная прививка непредельных силанов, позволяющие получить реакционноспособные полимеры, отверждаемые, например, на холоду, со-гидролизуемые с галогенсиланами и т. д. [58]. Перспективы получения на основе углеводородных полимеров с силоксановыми боковыми цепями эластомеров с ценными свойствами (тепло- и морозостойкость, сопротивление истиранию и др.) иллюстрируются свойствами уже изученных смесей каучуков общего назначения с небольшими (5—10%) добавками силоксановых полимеров [59, 60]. [c.240]

    Изопрен-нитрильные каучуки типа СКИН-30 целесообразно применять прежде всего для изготовления клеев и смесей с повышенной клейкостью. Кроме того, СКИН-30 можно использовать в производстве резиновых изделий, к которым не предъявляют высоких требований по морозостойкости. Особенно пригоден СКИН-30 для получения светлых изделий. [c.365]

    В зависимости от содержания 1,2-звеньев в сополимере изменяются прочность, эластичность, морозостойкость и износостойкость сажевых вулканизатов. Лучшим комплексом свойств обладают сополимеры с низким содержанием 1,2-звеньев [1, 43]. [c.278]

    Сополимеризация хлоропрена с другими мономерами. Одним из наиболее эффективных способов модификации свойств каучуков и латексов, получаемых на основе хлоропрена, является его сополимеризация с другими мономерами или привитая полимеризация. Эти методы позволили путем подбора соответствующих сомономеров получить новые типы хлоропреновых каучуков с меньшей кристалличностью, повышенной морозостойкостью, большей стойкостью к топливам и маслам, меньшей горючестью и лучшими диэлектрическими показателями. Этот способ оказался также весьма эффективным для модификации свойств латексов и расширения областей их применения. [c.378]


    По сравнению с цис-полибутадиеном он характеризуется луч-щей обрабатываемостью, более высокими показателями сопротивления разрыву, раздиру и разрастанию трещин, лучшим сцеплением с дорожным покрытием, приближаясь к нему по показателям эластичности, морозостойкости и износостойкости. [c.281]

    К числу недостатков следует отнести неудовлетворительную морозостойкость резин из ТПА. Для преодоления этого недостатка предложены следующие пути 1) синтез полимеров, содержащих менее 90% гранс-1,5-звеньев 2) введение мягчителей, тормозящих кристаллизацию 3) частичная изомеризация в процессе вулканизации. [c.325]

    При модификации пластмасс термоэластопласты применяются для повышения их морозостойкости и ударной вязкости. При модификации поливинилхлорида получены морозостойкие искусственные кожи [38]. Ударопрочные полипропилен и полистирол, полученные с добавками термоэластопластов, обладают повышенной морозостойкостью, ударной вязкостью, прочностью и высоким блеском [39]. [c.291]

    С увеличением молекулярной массы сополимеров повышаются прочность, эластичность и морозостойкость их вулканизатов. При молекулярной массе примерно 10 ширина ММР не влияет на эти свойства. При повышении молекулярной массы степень возрастания сопротивления разрыву и эластичности вулканизатов сополимеров с разными значениями коэффициента полидисперсности не одинакова (рис. 8) [58]. Аналогичным образом изменяется морозостойкость вулканизатов. [c.312]

    Бутадиеновые каучуки, получаемые в растворе. К этой группе каучуков относятся статистический СКДЛ, получаемый в присутствии литийорганических соединений, и стереорегулярные ц с-1,4-полибутадиены, образующиеся под влиянием титановых, кобальтовых и никелевых каталитических систем (СКД, СКД-2, СКД-3). Эти каучуки имеют различные молекулярные параметры, в связи с этим они отличаются реологическими характеристиками, стойкостью к термомеханической деструкции, морозостойкостью и некоторыми другими свойствами вулканизатов. [c.187]

    С понижением температуры прочностные показатели резин из ЦПА значительно возрастают, при этом относительное удлинение не изменяется. Сохранение свойств резин из ЦПА при низких температурах было подтверждено также отсутствием изменения твердости по Шору с понижением температуры до —80 °С, а также характером изменения остаточной деформации сжатия и напряжения при удлинении 100%. В работе [5] показано, что механические свойства резин из ЦПА при низких температурах сохраняются значительно лучше, чем для таких морозостойких каучуков, как полипропиленоксид и цыс-полибутадиен. [c.326]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Хлороформ также является превосходным растворителем для жиров, масел, смол и канифоли. В смеси с четыреххлористым углеродом он применяется как морозостойкая огнегасящая жидкость, имеющая температуру застывания около —50°. Он является исходным продуктом для получения хладагента хлордпфторметана (фреон 22) и тетрафторэтилена. Большое количество хлороформа применяется (в качестве растворителя) в производстве пенициллина. [c.119]

    Выполнены разработки по получению пипериленстирольного латекса ПС-50, морозостойкого каучука СКДП, каучука СКП-Л с использованием литиевого катализатора. Экономический эффект от применения 9 тыс. т латекса ПС-50 в строительной промышленности— 1254 тыс. руб. в год. Экономическая эффективность применения 1 т жидкого каучука СКД П-Н взамен растительного масла в производстве синтетической олифы Оксоль — 499 руб. [c.177]

    Известно, что при радикальной полимеризации не представляется возможным существенно регулировать структуру полимерной цепи. Анионная же полимеризация диенов впервые открыла возможность регулирования структуры полимера путем изменения природы щелочного металла и условий полимеризации. Еще в 30-х годах на Опы тном заводе литер Б было показано, что переход от натрия и калия к литию сопровождается повышением количества 1,4-звеньев в цепи и соответственно понижением температуры стеклования и улучшением морозостойкости полимера. На основании полученных данных был разработан промышленный способ и организовано производство морозостойкого литийбута-диенового каучука (СКБМ). [c.11]

    Литьевые резины, полученные на основе олигодиендиизоциа-натов, характеризуются, в отличие от уже нашедших широкое промышленное применение полиэфируретанов, высокими диэлектрическими свойствами, морозостойкостью, гидролитической устойчивостью, а также способностью к усилению активными наполнителями и к вулканизации серой или перекисями, совместимостью с маслами и с каучуками общего назначения. [c.14]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    Для использования в шинной иромышленности рекомендуется полимер с AI (3 3,5) 10 и MwlMn = 2,5—3,0 с удовлетворительными физико-механическими и технологическими свойствами. Такой тип каучука в настоящее время освоен промышленностью. Резины, полученные на его основе, характеризуются высоким сопротивлением разрыву и эластичностью как при 20, так и при 100 °С. Кроме того, для них характерна высокая износостойкость и морозостойкость. По этим показателям вулканизаты на основе СКД значительно превосходят вулканизаты из НК. Вместе с тем для изготовления, например, целого ряда резинотехнических изделий, кабелей тонкого сечения, резиновой обуви СКД с таким ММР неприемлем. Для удовлетворения потребителей таких изделий освоен выпуск каучука с MJMn = 4,0 5,0. [c.191]

    Бутадиен-стирольные и а-метилстирольные каучуки с небольшим содержанием связанного стирола (а-метилстирола) относятся к высокоэластичным и морозостойким каучукам. Каучук СКМС-Ю имеет сопротивление разрыву 19—22 МПа, относительное удлинение 500—700%, эластичность 40—47 и коэффициент морозостойкости 0,30—0,36 при удлинении 100% и температуре —45°С. Бутадиен-а-метилстирольный каучук СКМС-50 с высоким содержанием связанного а-метилстирола обладает хорошими технологическими свойствами, имеет oпpotивлeниe разрыву 22—28 МПа и относительное удлинение 450—550%. [c.267]

    Модифицированные термоэластопластами битумы применяются в качестве электроизоляционных материалов, антикорро-ЭН0НИЫХ мастик и полимерно-битумных вяжущих материалов. Антикоррозионные мастики на основе бутадиен-стирольных термоэластопластов имеют повышенную морозостойкость, эластичность и тугоплавкость [40]. Приготовление полимерно-битумных вяжущих материалов позволяет снизить температуру приготовления битумно-минеральных смесей, улучшить их уплотняемость при низких температурах воздуха, повысить сцепление покрытий с шинами автомобиля [32]. Разработан также состав битумных мастик, используемых для заливки швов цементно-бетонных покрытий на основе ДСТ-30. [c.291]


Смотреть страницы где упоминается термин Морозостойкость: [c.122]    [c.123]    [c.91]    [c.187]    [c.231]    [c.238]    [c.280]    [c.281]    [c.314]    [c.338]    [c.350]    [c.363]    [c.384]   
Смотреть главы в:

Прочность и долговечность клеевых соединений Издание 2 -> Морозостойкость

Стойкость эластомеров в эксплуатационных условиях -> Морозостойкость

Курс физиологии растений Издание 3 -> Морозостойкость

Технология переработки синтетических каучуков -> Морозостойкость

Технология переработки синтетических каучуков -> Морозостойкость

Лабораторный практикум по синтетическим каучукам -> Морозостойкость

Силиконовый каучук -> Морозостойкость


Физикохимия полимеров (1968) -- [ c.5 , c.8 ]

Физикохимия полимеров Издание второе (1966) -- [ c.3 , c.188 ]

Общая химическая технология органических веществ (1966) -- [ c.0 ]

Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.52 , c.175 , c.241 , c.309 ]

Физико-химия полимеров 1978 (1978) -- [ c.126 , c.166 ]

Полиамиды (1958) -- [ c.40 , c.61 , c.165 , c.196 , c.203 , c.245 ]

Кристаллизация каучуков и резин (1973) -- [ c.160 , c.214 ]

Пластификация поливинилхлорида (1975) -- [ c.104 , c.126 , c.130 , c.140 , c.154 ]

Стойкость эластомеров в эксплуатационных условиях (1986) -- [ c.84 ]

Краткий справочник химика Издание 6 (1963) -- [ c.288 ]

Деформация полимеров (1973) -- [ c.202 ]

Физико-химия полиарилатов (1963) -- [ c.145 ]

Химия и физика каучука (1947) -- [ c.173 ]

Механические испытания резины и каучука (1949) -- [ c.166 , c.167 ]

Химия и технология пленкообразующих веществ (1978) -- [ c.26 , c.44 , c.46 ]

Неметаллические химически стойкие материалы (1952) -- [ c.0 ]

Основы химии и технологии химических волокон Том 1 (1974) -- [ c.130 ]

Технология переработки пластических масс (1988) -- [ c.40 ]

Общая химическая технология Том 2 (1959) -- [ c.0 ]

Свойства химических волокон и методы их определения (1973) -- [ c.163 ]

Краткий справочник химика Издание 7 (1964) -- [ c.288 ]

Пластификаторы (1964) -- [ c.0 ]

Курс физиологии растений Издание 3 (1971) -- [ c.619 , c.620 , c.626 ]

Химия и технология синтетического каучука Изд 2 (1975) -- [ c.0 ]

Основы переработки пластмасс (1985) -- [ c.369 , c.371 ]




ПОИСК







© 2024 chem21.info Реклама на сайте