Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование многоядерных соединений

    Сырье крекинга — нефтяная фракция — представляет собой смесь углеводородов приблизительно одинакового молекулярного веса. Эти углеводороды относятся к различным гомологическим рядам в небольшом количестве содержатся парафины, конденсированные, многоядерные нафтеновые или ароматические углеводороды основную массу составляют алкилированные одно- и многоядерные нафтеновые и ароматические углеводороды, а также алкилированные нафтено-ароматические углеводороды. Длинные парафиновые цепи расщепляются сравнительно легко, значительно труднее идет разрыв олефиновых цепей по месту двойной связи. Описать точно расщепление сложных молекул весьма трудно, но представляется целесообразным для пополнения наших представлений сравнить реакции основных классов соединений, имеющихся в нефти. [c.299]


    Позже установили, что продукты алкилирования многоядерных ароматических углеводородов высшими олефинами, полученными из продуктов крекинга парафинов или продуктов дегидратации высокомолекулярных спиртов, являются более подходящ ими. В качестве конденсированных ароматических углеводородов применяли, в частности, нафталин и антрацен, а также карбазол. Количество ароматического компонента реакции должно быть больше 20% вес., а олефинов меньше 70% вес. В большинстве случаев оно составляет 50% вес. При более высоком содержании ароматических компонентов остается большая часть пепрореагировавших соединений, которые после превраш,ения отгоняют. Расход хлористого алюминия относительно велик и составляет 20—60% вес., чаш е 40% вес. от количества олефинов. При большем количестве безводного хлористого алюминия получаются продукты с худшими флуоресцирующими свойствами. Продукты конденсации имеют молекулярный вес 600—800 и представляют вязкие масла, легко растворяющиеся в углеводородах. Они также хорошо воспринимаются смазочными маслами и при добавке 0,1—0,2% вес. сообщают последним зеленую флуоресценцию, так что в этом отношении они аналогичны наилучшим пенсильванским смазочным маслам. [c.633]

    Перед проведением настоящего исследования обратная температурная зависимость скорости дезактивирования катализатора известна не была. Предложено объяснение этому факту, но 653. каких-либо доказательств его справедливости. Оно состоит в том что на катализаторе идут две разные реакции. Одна из них про текает с низкой энергией активации, ведет к образованию круппух молекул, которые с трудом покидают или вовсе не покидают большие полости катализатора через окна размером 0,1 нм. Эти крупные молекулы подвергаются дегидрированию с образованием кокса или многоядерных ароматических соединений. Другая реакция (алкилирование) имеет значительно более высокую энергщо активации при росте температуры идет лишь она. Это говорит о том, что при низких температурах взаимодействие пропилена бензолом контролируется кинетикой и приводит к высокой коц. центрации пропилена вокруг активных центров на поверхности катализатора. При повышенных температурах, когда скорость рц. акции очень высока, процесс лимитируется массопередачей и концентрация пропилена у активных центров низка. [c.299]

    В качестве катализаторов алкилирования использовалось много соединений, так что трудно оценить преимущество каждого из них. Как правило, стараются использовать возможно более мягкий катализатор, чтобы свести к минимуму изомеризацию. В случае н-ал-килгалогенидов и сравнительно малореакционноспособных ароматических соединений, например галогенбензолов, нужны более сильные катализаторы. С другой стороны, в случае бензил- или mpem-алкилгалогенидов и реакционноспособных соединений, как, например, многоядерные ароматические углеводороды, можно пользоваться слабыми катализаторами или работать совсем без них. Активность катализаторов в отношении их способностей алкилировать бензол уменьшается в следующем порядке [17] AljBrj > [c.48]


    Обратная селективность. Обратная селективность наблюдается в тех случаях, когда внутри полостей и каналов цеолитов образу ются такие крупные молекулы, которые не в состоянии диффундировать к поверхности. В конечном счете подобные соединения заполняют поры и дезактивируют катализатор. С такими явлениями сталкиваются при использовании любых цеолитов. Венуто и Гамильтон [41] определили, какие типы соединений приводят к дезактивации редкоземельного цеолита X в процессе алкилирования бензола этиленом в проточном реакторе непрерывного действия. В жидком алкилате наиболее Еысококкпящие компоненты составляли 0,1%. Они состоят главным образом из полиалкилнафтенов и полиалкил-бензолов ie ,8, таких, как гексаэтилбензол. Средний молекулярный вес фракции с температурой кипения выше 305° С равен 250. Конденсированные многоядерные ароматические соединения в алкилате обнаружены не были, но смолистые вещества, экстрагированные из катализатора, содержали конденсированные высшие поли-алкилароматические соединения. Интересно отметить, что подобные продукты уплотнения могут образоваться и из одного этилена или же при взаимодействии этилена и бензола. [c.328]

    Из литературных источников известно, что при крекинге на катализаторе протекают реакции конденсации, алкилирования, цик- лизации и ароматизации, в конце концов приводящие к образованию кокса путем передачи водорода к газообразным олефинам [125, 126]. Изучение механизма отложения кокса с использованием индивидуальных углеводородов позволило установить, что некоторые из них имеют высокую способность к коксообразованию. Многоядерные ароматические соединения, олефины и полиолефи-ны образуют большее количество этого продукта, чем нафтены и ларафины [126]. Применяя в качестве сырья углеводороды различных классов — парафины, нафтены, олефины и ароматические соединения, было найдено, что структура получаемого кокса во всех случаях одинакова. При этом показано, что при образовании кокса из олефинов промежуточными соединениями являются ароматические. Отмечена взаимосвязь между коксообразованием и основностью различных ароматических соединений. Другие авторы [127] обнаружили, что один из наиболее важных структурных элементов, найденных в коксе, включает конденсированные ароматические кольца. Кроме того, они же установили, что природа сырья влияет на характеристики кокса. [c.109]

    Безводный хлористый алюминий оказывает очень сильное действие на многие чистые ароматические соединения. Это действие особенно ярко выражено по отношению к ароматическим углеводородам. В настоящей главе описан ход реакций взаимодействия ароматических соединений с хлористым алюминием. К таким реакциям относятся дегидрогенизация, конденсация, миграция алкилов в боковых цепях, изомеризация, перегруппировка и простое расщепление. Поскольку некоторые реакции такого типа подробно описаны в самостоятельных главах, в данной главе разобран лишь общий характер и значение таких процессов. Здесь приведены примеры образования многоядерных углеводородов путем аз то-кондеысации ароматических углеводородов во время реакций алкилирования по Фриделю—Крафтсу, поскольку подобные реакции, повидимому, показывают склонность этих углеводородов к реакции конденсации при различных условиях. В настоящей главе разбираются также процессы отщепления замещающих групп от соединений неуглеводородного характера. [c.712]


Смотреть страницы где упоминается термин Алкилирование многоядерных соединений: [c.194]    [c.614]    [c.96]    [c.361]    [c.279]   
Новые методы препаративной органической химии (1950) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Многоядерные соединения



© 2024 chem21.info Реклама на сайте