Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции, приводящие к образованию соединений со связью

    Окислительно-восстановительные реакции во внутренней сфере наиболее распространены. При этом в качестве мостика могут выступать одноатомные и многоатомные лиганды, а также ионы. Лимитирующей стадией в указанных реакциях могут быть образование мостиковой связи, перенос электронов в мостиковом промежуточном соединении и др. Экспериментальные результаты приводят к выводу, что перенос электронов с большей скоростью осуществляется для многоатомных частиц по сравнению с одно- [c.280]


    Структурные особенности соединений являются важными факторами в образовании сульфона. Так, при сравнимых условиях в реакции с SO3 образование сульфона уменьшается в следующем порядке бензол, толуол, га-ксилол, додецилбензол, причем при сульфировании последнего образования сульфона практически не наблюдается. Присутствие сравнительно небольших количеств других веществ также оказывает влияние на образование сульфона, например при одних и тех же условиях бензол марки X. ч. дал. 5 % сульфона, а бензол, очищенный перегонкой, — около 1 % [64]. При сульфировании с SO3 добавление к бензолу 0,03 % мол. безводного сульфата натрия снижало образование сульфона с 24%, полученных, без ингибитора, до 3,5% [75]. Сообщается также, что при применении того же сульфирующего агента сульфат иатрия снижает образование сульфона при превращении моносульфокислот в дисульфокислоты. Добавление натриевой соли бензолсульфокислоты уменьшает образование сульфона при моносульфировании бензола 20% олеума [74]. При сульфировании полистирола образование сульфона приводит к соединению полимерных цепей поперечными связями [9, 77, 92, 93], чего надо избегать, если хотят получить растворимый в воде продукт. [c.525]

    Как мы уже видели выше, иод катализирует сдвиг двойной связи в олефинах (разд. IV.2. А), вызывая образование смеси изомеров с двойной связью. Кроме того, в тех случаях, когда это позволяет структура углеводорода, реакция приводит к образованию диенов, триенов и бензольных колец. Ацетиленовые и алленовые соединения тоже образуются из соединений С2 и С.  [c.150]

    На третьей стадии процесса производится увеличение молекулярного веса изоцианат-полиэфира в результате взаимодействия его с различными сшивающими агентами—с водой, диаминами или гликолями. Во всех случаях эти соединения реагируют с концевыми изоцианатными группами, реакция осуществляется при нагревании и механическом перемешивании. При взаимодействии с водой, по-видимому, сначала одна изоцианатная группа переходит в аминогруппу, которая далее реагирует с другой изоцианатной группой, образуя мочевинные связи. Реакция изоцианат-полиэфиров с гликолями приводит- образованию уретановых связей. При действии диаминов, так же как и при реакции с водой, возникают мочевинные группы. [c.575]

    Реакции ароматизации и конденсации состоят, напротив, в образовании ароматических групп, все более и более расширяемых одновременно путем дегидрогенизации (следовательно ароматизации) насыщенных колец и соединения ароматических групп между собой путем образования ароматических связей С—С. Эти реакции освобождают водород и приводят к образованию твердого остатка угле- [c.80]


    В направлении этих реакций важное значение имеют природа и прочность химической связи в образующихся продуктах реакций. В растворах электролитов обмен ионами обычно приводит к образованию соединений с более прочной химической связью. [c.36]

    Различают два вида адсорбции. Первая—хемосорбция— обусловлена образованием химических связей между молекулами адсорбата и поверхностью адсорбента. Она подобна химическим реакциям и приводит к образованию поверхностных соединений. [c.185]

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]

    Общепринятая классификация всех реакций органических соединений, в том числе и реакций ароматического замещения, строится на несколько формальных брутто-схемах, в которых приводятся только исходные и конечные продукты химического превращения, и общих иредставлениях об образовании или разрыве химических связей. При этом реагирующие частицы условно разделяют на исходное соединение, считающееся субстратом, и атакующий реагент. Последний может быть электронодефицитным, электроноизбыточным или же содержать неспаренный электрон, т. е. являться свободным радикалом. Образование химической связи между субстратом и электронодефицитным реагентом происходит путем обобщения электронной пары, ранее полностью принадлежавшей субстрату. Такой реагент и реакции с его участием считают электрофильными. Наиример, рассматриваемые в настоящей главе реакции ароматического электрофильного замещения в первом приближении могут быть представлены брутто-схемой  [c.33]

    Именно этим объясняется преимущественное образование олефинов с неконцевой двойной связью в реакциях, сопровождающихся возникновением двойной связи и способных приводить к возникновению обоих типов соединений, а также весьма быстрая изомеризация в подобных реакциях менее стабильного продукта в более стабильный. [c.43]

    Карбонильная группа сильно поляризована электроны двойной связи оттянуты к атому кислорода, вследствие чего на нем сосредоточен частичный отрицательный заряд, а на атоме углерода — частичный положительный. Поэтому карбонильная группа легко подвергается нуклеофильной атаке, неизменно направленной на ее углеродный атом. В случае соединений с нуклеофильным атомом углерода, как иногда говорят, С-нуклеофилов, такие реакции приводят к образованию новых С—С-связей. [c.129]

    Количественное изменение и перераспределение группового химического состава обусловлено отличиями в характере взаимодействия серы с различными групповыми химическими фракциями сырья. Увеличение содержания легких и средних ароматических углеводородов может объясняться взаимодействием кластеров серы, обладающих псевдо-ароматическим характером, с ароматическим кольцом углеводородов с образованием межмолекулярных связей. В результате протекания реакций и возможного образования полисульфидных мостиков увеличивается количество соединений, определяемых методом ГХС как смолы, а связывание полициклических ароматических углеводородов приводит к уменьшению содержания соединений, определяемых как тяжелые ароматические углеводороды. Ниже представлена возможная схема взаимодействия серы с разными радикалами  [c.10]


    Обычно дифенилкетен применяют в виде его хинолинового комплекса последний содержит 2 моля кетена на 1 моль хино-лина и при нагревании выше температуры плавления (121°) распадается на исходные компоненты. Обычно карбонильное соединение нагревают с этим комплексом в отсутствие растворителя при температуре, лежащей в интервале 120—160°, до тех пор, пока не прекратится выделение углекислого газа. Можно применять также инертный высококипящий растворитель, например, ксилол. Карбонильные группы, активированные сопряженными двойными связями, легко реагируют с дифенилкетеном, однако параллельно протекающая реакция приводит к образованию S-лактонов (XVI). Во многих случаях 8-лактоны являются главными продуктами реакции [88]. [c.404]

    Полимеризация диенов образование поперечных связей. При полимеризации или сополимеризации мономера, содержащего две олефиновые связи, внедрение каждой новой молекулы диена сопровождается введением в полимер одной двойной связи. Последующие реакции растущей полимерной цепи могут поэтому приводить не только к присоединению молекулы мономера, но также к реакции, которую можно рассматривать как сонолимеризацию мономера и полимера, т. е. присоединение предварительно образовавшейся молекулы полимера к растущей полимерной цепи. Следовательно, конечным продуктом такой реакции может быть не набор линейных молекул, а очень сложная сеть полимерных цепей, соединенных между собой поперечными связями в одну гигантскую молекулу. Такое изменение структуры по сравнению со структурой простого винилового полимера приводит и к соответствующему изменению физических свойств. Полимер, содержащий большое количество поперечных связей, нерастворим и уже нетермопластичен. [c.155]

    Связь углерод - металл у углерода, изображенного знаком-С, гидрируется хемосорбированным водородом Н с образованием соединения СН3СН2 - СН - СН3,которое, отщепляя водород, переходит в СН3СН - СН - СН3 + Н. Последующая десорбция приводит к образованию бутена-2. Предложенный механизм реакции не только объясняет причину миграции двойной связи, но и показывает, что не все хемосорбированные молекулы олефина подвергаются гидрированию. В пользу такого предположения говорит и то обстоятельство, что цис-транс-кэо-меризация протекает быстрее, чем миграция двойной связи. [c.36]

    В разных случаях гидролиз амидной связи может также ускоряться. В приведенном ниже примере каталитический эффект оказывает пиридиновое кольцо. Первая скоростьлимитирующая стадия (медленная) приводит к образованию промежуточного ацилпиридиния(1-11), напоминающего ацильиое производное фермента, обнаруживаемого во многих ферментативных реакциях. Это промежуточное соединение затем быстро гидролизуется водой. [c.18]

    Образование водородной связи фермент — субстрат (пунктир) стабилизирует переходное состояние нуклеофильной атаки, что приводит к ускорению реакции (табл. 7). Соединения I, III и IV (не содержащие а-ациламидного фрагмента) лишь слабо отличаются по относительной реакционной способности их на активном центре фермента (см. примечание к табл. 7). В то же время наличие донора водородной связи в молекуле субстрата (а-ациламидный фрагмент) приводит к ускорению реакции на один (соединения П1 hV) или на два (соединения и II) десятичных порядка. Интересно отметить, что в случае субстратов VI и VII с жесткой (циклической) структурой наблюдаемое ускорение (110 раз) значительно превосходит эффект (16 раз), свойственный соединениям III и V с незакрепленной структурой. Можно полагать, что в последнем случае образование водородной связи фермент — субстрат накладывает более существенные энтропийные ограничения на подвижность (внутренние вращательные степени свободны) субстратной молекулы. Это и должно уменьшить (как уже было сказано) суммарный вклад комплексообразование E-R в ускорение реакции. [c.47]

    Реакция потекает по анионно-координационному механизму. Каждый акт присоединения мономера начинается со стадии образования я-комплекса двойной связи мономера (донор электронов) с переходным металлом катализатора (акцептор электронов). Благодаря наличию неспаренных я-электронов переходные элементы акцептируют электроны электронодонорных веществ, образуя комплексные соединения с высоким координационным числом (6—8). Возникновение я-комплекса приводит к ослаблению связи Ме---К, что облегчает внедрение мономера в корень растущей полимерной цепи. Такой механизм позволяет объяснить высокую избирательность катализаторов Циглера — Натта. К образованию я-комплексов Склонны мономеры с повыщенной электронной плотностью у двойной связи, т. е. мономеры, полимеризующиеся по механизму катионной полимеризации. В то же время внедрение очередного мономера по связи Ме—С характерно для реакций анионного роста цепи. [c.28]

    Стадии здесь те же, что и в механизме присоединения — отщепления, но они осуществляются в обратном порядке. Доказательство протекания этой последовательности стадий [219] заключается в следующем 1) реакция не идет в отсутствие этилат-иона, и скорость ее зависит от кoнцeнтpaщ и этого иона, а не от концентрации ArS 2) в тех же реакционных условиях хлороаце-тилен дает продукты 80 и 76 и 3) при обработке ионами ArS соединение 80 не вступает в реакцию, но при добавлении EtO был получен продукт 76. Интересно, что механизм отщепления — присоединения реализуется даже в случае пяти- и шестичленных циклических систем, где образование тройной связи сопровождается возникновением большого напряжения [220]. Отметим, что как механизм присоединения — отщепления, так и отщепления— присоединения, как было показано выше, приводит к общему сохранению конфигурации, так как в каждом случае и присоединение и элиминирование происходят в анти-направлении. [c.64]

    Но все подсчеты, сделанные для газовых сред и с помощью различных приближений распространенные на жидкости, приводят к общему важному заключению, что ван-дер-ваальсовы силы рассмотренных выше типов вносят лишь незначительный вклад в общую энергию связей между частицами жидкости. Особенно убедителен расчет для воды (см. М. И. Шахпаронов). Приняв диаметр молекулы воды равным приблизительно 0,28 нм, получаем для усредненной энергии дипольного взаимодействия 797 Дж/моль, лондоновского—140 и поляризационного 42 Дж/моль, т. е. всего 979 Дж/моль, тогда как при испарении одного моля воды поглощается 42 000 Дж/моль. Ван-дер-ваальсовы взаимодействия таким образом обусловливают всего около 2% энергии связей в воде. К этому можно добавить, что энергия теплового движения при 300 К составляет приблизительно 2500 Дж/моль — значительно больше, чем энергия ван-дер-ваальсовых взаимодействий. Вот почему химические взаимодействия между молекулами жидкостей, в результате которых жидкость образует единую химическую систему, представляют особенно большой интерес. Сильные химические взаимодействия, при которых происходит перестройка электронных оболочек, разрываются химические связи и возникают новые связи, сопровождаются большими изменениями запаса энергии системы (порядка 400 кДж/моль) и ведут к образованию соединений, значительно отличающихся по свойствам от исходных. Такой процесс называют химической реакцией. При этом, разумеется, жидкая система может превратиться в пар или твердое вещество. [c.241]

    Оценочные значения констант равновесия реакций, протекающих между газообразными органическими веществами, удобно получать по АС° образования внутримолекуляр Лых связей различного типа. В основу расчета можно положить допущение, что стандартное изменение энергии Гиббса при образовании соединения обусловлено природой и числом атомных связей в его молекуле, т. е. приписать каждому типу связи определенное значение энергии образования Гиббса. Значение А0° реакции рассчитывают затем по ДС°бр реагирующих веществ. В таблицах приводятся обычно значения ДО°бр связей и многочлены, характеризующие их зависимость от температуры. Тогда ДО др соединения в этом случае вычисляют как сумму энергий образования связей. Например, ДО бр бутана, имеющего структурную формулу Н Н Н Н [c.383]

    При ориентированной адсорбции части молекул, соприкасающиеся с решеткой адсорбента, могут находиться в кристаллографическом соответствии с последним. Активными центрами для катализа являются центры роста и кристаллические зародыши. С учетом структуры поверхности в мультиплетной теории вводится представление о возможности образования различных поверхностных соединений, различающихся энергетическими характеристиками и строением. Связь реагирующей молекулы с одним атомом поверхности приводит только к адсорбции. Молекула недостаточно активирована для участия в реакции. Образование двухцентровых связей наиболее оптимально для последующего осуществления каталитической реакции. [c.73]

    Применение теории жристаллического поля и поля лигандов к структуре комшлексав приводит к одинаковым результатам. Ли-гаиды, имеющие я-связи, взаимодействуют с заполненными -орбиталями с образованием дативной связи. Поэтому лучшими катализаторами для олефиновых и ацетиленовых углеводородов являются ионы с конфигурацией > Hg +, 0(1 +, Си+, Ад+, Р1°. В реакции полимеризации олефинов наиболее активны соединения катионов с конфигурацией Т1 +, Сг +, Мо +. [c.170]

    Однако фенилгидразин не является окисляющим агентом, и данные, полученные Вейгандом (1946), подтверждают следующий механизм образования фенилозазонов. Главной определяющей стадией реакции является диспропорционирование фенилгидразона II, которое приводит к образованию соединения III в результате миграции двух атомов водорода от вторичной спиртовой группы к двойной связи С — N  [c.534]

    Питцер отмечал, что между р-орбиталями насыщенной азотной системы а) существует отталкивание, которое делает связь N—N более длинной (1,40А), чем сумма радиусов двух атомов азота (0,53 А). Однако в элементарном азоте в) р-орбитали взаимно притягиваются, что дополнительно стабилизирует связь между атомами. Вследствие этого химические реакции гидразина (а), приводящие к азоту (б), протекают легко. Высокая устойч 1вость элементарного азота оказывает большое влияние на ход реакций, затрагивающих связь азот — азот. Поскольку азот — вещество со столь низкой энергией, его образование в реакции почти всегда приводит к уменьшению свободной энергии реакционной системы. Важно также отметить, что газообразный азот уже в момент образования покидает сферу реакции. Таким образом, равновесие в реакции с образованием элементарного азота невозможно, и вследствие этого исходное соединение можно полностью превратить в конечные продукты. [c.12]

    Поверхностное соединение (РеН5 ")а,дс представляет собой диполь ионного характера, отрицательный конец которого обращен в сторону раствора. Прочная связь атомов железа с серой [116,117] приводит к ослаблению связи между атомами железа, что облегчает их переход в раствор. Образование (РвН )2 дд происходит по реакции [c.58]

    Содержащие при С" карбоксильную группу 3-бензазепины типа 26 и 27 являются конформационно-ограниченными аналогами аминокислот Plie, Туг, Тф и His [40]. Несколько групп исследователей изучали применение к синтезу подобных соединений внутримолекулярной реакции Хека (образование С -С связи). Гибсон показала, что внутримолекулярная реакция Хека дает продукт 26 с выходом 55%, [41], в то время как радикальная циклизация приводит к соединению 27 с выходом 73%) [42] (схема 9). Реакция Хека может быть применена и к синтезу высших гомологов 1,2,3,4,5,6-тетрагидро-3-бензазоцин-2-карбоновой кислоте (Hi , и = 2 на схеме 9) и к 2,3,4,5,6-гексагидро-3-бензазонин-2-карбоновой кислоте (Nie, и = 3) [41, 43]. [c.49]

    Интересные результаты получены при взаимодействии 2,3-дигидродиазе-пинов с 2-диазо-1,3-дифенилпропан-1,3-дионом 33. Реакция затрагивает как вторичную аминогруппу, так и азометиновую связь, что приводит к образованию соединений 34 и 35 [63]  [c.156]

    Высокая стереоселективность 1,2-перегруппировок и введение в указанные реакции хиральных сульфидов открывают широкие возможности для их использования в асимметрическом синтезе [14]. В частности, перегруппировки Стивенса позволяют решить такую ключевую проблему в синтезе природных азотсодержащих соединений, как стереоселективное формирование новых С-С связей в а-положении к атому азота. Так, на примере синтеза бициклического (3-лактама 74 продемонстрирован новый подход к 6-амидокарбопенициллиновым антибиотикам [44]. Фотолиз диазокетона 76 приводит к илиду 75, который после перегруппировки дает соединение 74 со стереоселективным образованием новой связи С-С (схема 18). [c.218]

    Если первоначально возникающая карбоксильная компонента находится в избытке, 0-ацилизомочевина (73) может предпочтительно реагировать с карбоновой кислотой или ее производным, что приводит к симметричному ангидриду (74) путь (б) на схеме (32) . Это вторичное активированное соединение способно в свою очередь реагировать с аминокомпонентой с образованием пептида и с регенерацией части карбоксильной компоненты, которая, таким образом, включается в цикл. Внолне вероятно, что образование пептидной связи в процессе твердофазного синтеза (см. разд. 23.6.4), при котором карбоксильная компонента обычно находится в большом избытке, в значительной мере протекает через промежуточный симметричный ангидрид. В отсутствие аминов карбодиимиды можно очень успешно применять для получения симметричных ангидридов. И, наконец, в отсутствии аминокомпоненты или когда реакции соединений (73) или (74) с амином протекают особенно вяло, может образоваться устойчивая Л -ацилмочевина (75). Это может произойти либо путем внутримолекулярной перегруппиров- [c.392]

    Для синтеза алюминийтриалкилов лучше всего, по-видимому,, использовать реакции перераспределения (переметаллироваиие) литий- и магнийорганических соединений с хлоридом алюминия. Эти реакции в общем случае протекают в сторону образования соединений, у которых наиболее электроотрицательные группы связаны с наиболее электроположительным металлом, причем направление процесса не зависит от пространственных требований алкильных групп. Наиример, обработка трег-бутиллития [18] илн трег-бутилмагнийхлорида [19] хлоридом алюминия в эфирных растворах с высокими выходами приводит к три-грег-бутилалюми-нию. Аналогичная реакция аллильных реактивов Гриньяра с хлоридом алюминия ведет к соответствующим аллильным соединениям алюминия [20]. Если применение эфиров нежелательно, первичные [21], вторичные [22] и третичные [23] триалкилалаиы [c.102]


Смотреть страницы где упоминается термин Реакции, приводящие к образованию соединений со связью: [c.180]    [c.389]    [c.90]    [c.346]    [c.21]    [c.49]    [c.53]    [c.204]    [c.78]    [c.110]    [c.111]    [c.82]    [c.294]    [c.347]    [c.205]    [c.27]    [c.46]    [c.423]    [c.147]    [c.608]   
Смотреть главы в:

Методы элементоорганической химии Германий олово свинец -> Реакции, приводящие к образованию соединений со связью




ПОИСК





Смотрите так же термины и статьи:

Реакции образования связей



© 2025 chem21.info Реклама на сайте